Localization and Stabilization of Unstable Solutions of Chaotic Dynamical Systems

作者: N. A. Magnitskii , S. V. Sidorov

DOI: 10.1023/A:1013841518003

关键词:

摘要: In this survey, we describe the contemporary state of theory chaotic dynamical systems on a fairly rigorous level. We present results related to development chaos in such and consider their basic properties. also analyze current methods for stabilization behavior controlling dynamics deterministic systems.

参考文章(11)
O. E. Rössler, Chaos and Turbulence Springer, Berlin, Heidelberg. pp. 147- 153 ,(1980) , 10.1007/978-3-642-67592-8_12
Ju L Daleckii, Mark Grigor_evich Kre_n, None, Stability of Solutions of Differential Equations in Banach Space ,(1974)
Alexander Yu. Loskutov, Andrew I. Shishmarev, Control of dynamical systems behavior by parametric perturbations: An analytic approach Chaos: An Interdisciplinary Journal of Nonlinear Science. ,vol. 4, pp. 391- 395 ,(1994) , 10.1063/1.166017
N.A. Magnitskii, Stabilization of unstable periodic orbits of chaotic maps Computers & Mathematics with Applications. ,vol. 34, pp. 369- 372 ,(1997) , 10.1016/S0898-1221(97)00133-8
Troy Shinbrot, Celso Grebogi, James A. Yorke, Edward Ott, Using small perturbations to control chaos Nature. ,vol. 363, pp. 411- 417 ,(1993) , 10.1038/363411A0
Jonathan Machta, Power law decay of correlations in a billiard problem Journal of Statistical Physics. ,vol. 32, pp. 555- 564 ,(1983) , 10.1007/BF01008956
M. Mackey, L Glass, Oscillation and chaos in physiological control systems Science. ,vol. 197, pp. 287- 289 ,(1977) , 10.1126/SCIENCE.267326
Y. Kuramoto, T. Tsuzuki, On the Formation of Dissipative Structures in Reaction-Diffusion Systems--Reductive Perturbation Approach Progress of Theoretical Physics. ,vol. 54, pp. 687- 699 ,(1975) , 10.1143/PTP.54.687
Chen Guanrong, Controlling Chaos in Nonlinear Dynamical Systems Control theory & applications. ,(1997)