AI-based investigation of molecular biomarkers of longevity.

作者: Ihor Kendiukhov

DOI: 10.1007/S10522-020-09890-Y

关键词:

摘要: In this paper, I build deep neural networks of various structures and hyperparameters in order to predict human chronological age based on open-access biochemical indicators their specifications from the NHANES database. total, 1152 are trained tested. The algorithms tested incomplete data: missing values data records extrapolated by mean or median for each parameter. select best terms validation accuracy (coefficient determination absolute error). It turns out that most accurate results delivered multilayer (6 layers) with recurrent layers. Neural network types selected trial error. reached an 78% coefficient 6.5 also list empirically determined features increase task prediction. Obtained can be considered as approximation biological age. Parameters training datasets broadly: all potentially relevant parameters (926) database used. Although data, they demonstrated ability make reasonable predictions (with R2 > 0.7) no more than 100 indicators. Hence, practical reasons full 926 not required, although analysis impact indicator is useful theoretical developments.

参考文章(37)
Maxwell W. Libbrecht, William Stafford Noble, Machine learning applications in genetics and genomics Nature Reviews Genetics. ,vol. 16, pp. 321- 332 ,(2015) , 10.1038/NRG3920
Alexander Bürkle, María Moreno-Villanueva, Jürgen Bernhard, María Blasco, Gerben Zondag, Jan HJ Hoeijmakers, Olivier Toussaint, Beatrix Grubeck-Loebenstein, Eugenio Mocchegiani, Sebastiano Collino, Efstathios S Gonos, Ewa Sikora, Daniela Gradinaru, Martijn Dollé, Michel Salmon, Peter Kristensen, Helen R Griffiths, Claude Libert, Tilman Grune, Nicolle Breusing, Andreas Simm, Claudio Franceschi, Miriam Capri, Duncan Talbot, Paola Caiafa, Bertrand Friguet, P Eline Slagboom, Antti Hervonen, Mikko Hurme, Richard Aspinall, None, MARK-AGE biomarkers of ageing Mechanisms of Ageing and Development. ,vol. 151, pp. 2- 12 ,(2015) , 10.1016/J.MAD.2015.03.006
Steve Horvath, DNA methylation age of human tissues and cell types Genome Biology. ,vol. 14, pp. 3156- ,(2013) , 10.1186/GB-2013-14-10-R115
JinHo Park, BeLong Cho, HyukTae Kwon, CheolMin Lee, Developing a biological age assessment equation using principal component analysis and clinical biomarkers of aging in Korean men Archives of Gerontology and Geriatrics. ,vol. 49, pp. 7- 12 ,(2009) , 10.1016/J.ARCHGER.2008.04.003
Brenna S. McCauley, Weiwei Dang, Histone methylation and aging: lessons learned from model systems. Biochimica et Biophysica Acta. ,vol. 1839, pp. 1454- 1462 ,(2014) , 10.1016/J.BBAGRM.2014.05.008
Susan Cheng, Martin G. Larson, Elizabeth L. McCabe, Joanne M. Murabito, Eugene P. Rhee, Jennifer E. Ho, Paul F. Jacques, Anahita Ghorbani, Martin Magnusson, Amanda L. Souza, Amy A. Deik, Kerry A. Pierce, Kevin Bullock, Christopher J. O’Donnell, Olle Melander, Clary B. Clish, Ramachandran S. Vasan, Robert E. Gerszten, Thomas J. Wang, Distinct metabolomic signatures are associated with longevity in humans Nature Communications. ,vol. 6, pp. 6791- 6791 ,(2015) , 10.1038/NCOMMS7791
Ilya Sutskever, Geoffrey Hinton, Alex Krizhevsky, Ruslan Salakhutdinov, Nitish Srivastava, Dropout: a simple way to prevent neural networks from overfitting Journal of Machine Learning Research. ,vol. 15, pp. 1929- 1958 ,(2014)
Gregory Hannum, Justin Guinney, Ling Zhao, Li Zhang, Guy Hughes, SriniVas Sadda, Brandy Klotzle, Marina Bibikova, Jian-Bing Fan, Yuan Gao, Rob Deconde, Menzies Chen, Indika Rajapakse, Stephen Friend, Trey Ideker, Kang Zhang, Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates Molecular Cell. ,vol. 49, pp. 359- 367 ,(2013) , 10.1016/J.MOLCEL.2012.10.016
S. Horvath, W. Erhart, M. Brosch, O. Ammerpohl, W. von Schonfels, M. Ahrens, N. Heits, J. T. Bell, P.-C. Tsai, T. D. Spector, P. Deloukas, R. Siebert, B. Sipos, T. Becker, C. Rocken, C. Schafmayer, J. Hampe, Obesity accelerates epigenetic aging of human liver Proceedings of the National Academy of Sciences of the United States of America. ,vol. 111, pp. 15538- 15543 ,(2014) , 10.1073/PNAS.1412759111
Jerry W Shay, Telomeres and Aging Physiological Reviews. ,vol. 88, pp. 557- 579 ,(2008) , 10.1152/PHYSREV.00026.2007