Review, Evaluation, and Discussion of the Challenges of Missing Value Imputation for Mass Spectrometry-Based Label-Free Global Proteomics

作者: Bobbie-Jo M. Webb-Robertson , Holli K. Wiberg , Melissa M. Matzke , Joseph N. Brown , Jing Wang

DOI: 10.1021/PR501138H

关键词:

摘要: … that the latent variables and the noise are normally distributed. In the PPCA framework, the … that has the least amount of missing data and greatest average intensity in the situation of a …

参考文章(47)
Lloyd M Smith, Neil L Kelleher, Michal Linial, David Goodlett, Pat Langridge-Smith, Young Ah Goo, George Safford, Leo Bonilla, George Kruppa, Roman Zubarev, Jon Rontree, Julia Chamot-Rooke, John Garavelli, Albert Heck, Joseph Loo, Deborah Penque, Martin Hornshaw, Christopher Hendrickson, Ljiljana Pasa-Tolic, Christoph Borchers, Dominic Chan, Nicholas Young, Jeffrey Agar, Christophe Masselon, Michael Gross, Fred McLafferty, Yury Tsybin, Ying Ge, Ian Sanders, James Langridge, Julian Whitelegge, Alan Marshall, Proteoform: a single term describing protein complexity Nature Methods. ,vol. 10, pp. 186- 187 ,(2013) , 10.1038/NMETH.2369
Daniela Albrecht, Olaf Kniemeyer, Axel A. Brakhage, Reinhard Guthke, Missing values in gel-based proteomics. Proteomics. ,vol. 10, pp. 1202- 1211 ,(2010) , 10.1002/PMIC.200800576
Bobbie-Jo M. Webb-Robertson, Lee Ann McCue, Katrina M. Waters, Melissa M. Matzke, Jon M. Jacobs, Thomas O. Metz, Susan M. Varnum, Joel G. Pounds, Combined Statistical Analyses of Peptide Intensities and Peptide Occurrences Improves Identification of Significant Peptides from MS-Based Proteomics Data Journal of Proteome Research. ,vol. 9, pp. 5748- 5756 ,(2010) , 10.1021/PR1005247
Ann L. Oberg, Olga Vitek, Statistical design of quantitative mass spectrometry-based proteomic experiments. Journal of Proteome Research. ,vol. 8, pp. 2144- 2156 ,(2009) , 10.1021/PR8010099
Bobbie-Jo M. Webb-Robertson, Melissa M. Matzke, Thomas O. Metz, Jason E. McDermott, Hyunjoo Walker, Karin D. Rodland, Joel G. Pounds, Katrina M. Waters, Sequential projection pursuit principal component analysis--dealing with missing data associated with new -omics technologies. BioTechniques. ,vol. 54, pp. 165- ,(2013) , 10.2144/000113978
Ruiyan Luo, Christopher M. Colangelo, William C. Sessa, Hongyu Zhao, Bayesian Analysis of iTRAQ Data with Nonrandom Missingness: Identification of Differentially Expressed Proteins Statistics in Biosciences. ,vol. 1, pp. 228- 245 ,(2009) , 10.1007/S12561-009-9013-2
Wilson Wen Bin Goh, Marek J. Sergot, Judy Cg Sng, Limsoon Wong, Comparative Network-Based Recovery Analysis and Proteomic Profiling of Neurological Changes in Valproic Acid-Treated Mice Journal of Proteome Research. ,vol. 12, pp. 2116- 2127 ,(2013) , 10.1021/PR301127F
Veit Schwämmle, Ileana Rodríguez León, Ole Nørregaard Jensen, Assessment and Improvement of Statistical Tools for Comparative Proteomics Analysis of Sparse Data Sets with Few Experimental Replicates Journal of Proteome Research. ,vol. 12, pp. 3874- 3883 ,(2013) , 10.1021/PR400045U
Johannes Tuikkala, Laura L Elo, Olli S Nevalainen, Tero Aittokallio, Missing value imputation improves clustering and interpretation of gene expression microarray data BMC Bioinformatics. ,vol. 9, pp. 202- 202 ,(2008) , 10.1186/1471-2105-9-202
Guy N Brock, John R Shaffer, Richard E Blakesley, Meredith J Lotz, George C Tseng, Which missing value imputation method to use in expression profiles: a comparative study and two selection schemes BMC Bioinformatics. ,vol. 9, pp. 12- 12 ,(2008) , 10.1186/1471-2105-9-12