Convergence Rate for Galerkin Approximation of the Stochastic Allen—Cahn Equations on 2D Torus

作者: Ting Ma , Rong Chan Zhu

DOI: 10.1007/S10114-020-9367-4

关键词:

摘要: In this paper we discuss the convergence rate for Galerkin approximation of stochastic Allen-Cahn equations driven by space-time white noise on $\T$. First prove that 2D heat equation is order $\alpha-\delta$ in Besov space $\C^{-\alpha}$ $\alpha\in(0,1)$ and $\delta>0$ arbitrarily small. Then obtain $\alpha\in(0,2/9)$

参考文章(43)
Hans Triebel, Theory of Function Spaces III ,(2008)
Hajer Bahouri, Raphaël Danchin, Jean-Yves Chemin, Fourier Analysis and Nonlinear Partial Differential Equations ,(2011)
Marc Yor, Daniel Revuz, Continuous martingales and Brownian motion ,(1990)
Elias M. Stein, Guido L. Weiss, Introduction to Fourier Analysis on Euclidean Spaces. ,(1971)
István Gyöngy, Sotirios Sabanis, David Šiška, Convergence of tamed Euler schemes for a class of stochastic evolution equations Stochastics and Partial Differential Equations: Analysis and Computations. ,vol. 4, pp. 225- 245 ,(2016) , 10.1007/S40072-015-0057-7
Massimiliano Gubinelli, Ramification of rough paths Journal of Differential Equations. ,vol. 248, pp. 693- 721 ,(2010) , 10.1016/J.JDE.2009.11.015
S. Albeverio, M. R�ckner, Stochastic differential equations in infinite dimensions : solutions via Dirichlet forms Probability Theory and Related Fields. ,vol. 89, pp. 347- 386 ,(1991) , 10.1007/BF01198791