Tanglegrams: a reduction tool for mathematical phylogenetics

作者: Sara Billey , Matjaž Konvalinka , Frederick A Matsen Iv , Arnold Kas

DOI:

关键词:

摘要: Many discrete mathematics problems in phylogenetics are defined terms of the relative labeling pairs leaf-labeled trees. These labelings naturally formalized as tanglegrams, which have previously been an object study coevolutionary analysis. Although there has considerable work on planar drawings they not fully explored combinatorial objects until recently. In this paper, we describe how many mathematical questions trees "factor" through a problem and understanding that factoring can simplify Depending problem, it may be useful to consider unordered version and/or their unrooted counterparts. For all these definitions, show isomorphism types tanglegrams understood double cosets symmetric group, investigate automorphisms. Understanding better will isolate distinct reveal natural symmetries spaces associated with such problems.

参考文章(33)
Mukul S. Bansal, Wen-Chieh Chang, Oliver Eulenstein, David Fernández-Baca, Generalized Binary Tanglegrams: Algorithms and Applications international conference on bioinformatics. pp. 114- 125 ,(2009) , 10.1007/978-3-642-00727-9_13
Roderic D. M. Page, Tangled trees : phylogeny, cospeciation, and coevolution University of Chicago Press. ,(2003)
Sebastian Böcker, Falk Hüffner, Anke Truss, Magnus Wahlström, A Faster Fixed-Parameter Approach to Drawing Binary Tanglegrams Parameterized and Exact Computation. pp. 38- 49 ,(2009) , 10.1007/978-3-642-11269-0_3
Kevin Buchin, Maike Buchin, Jaroslaw Byrka, Martin Nöllenburg, Yoshio Okamoto, Rodrigo Silveira, Alexander Wolff, None, Drawing (Complete) Binary Tanglegrams graph drawing. pp. 324- 335 ,(2009) , 10.1007/978-3-642-00219-9_32
Ran Libeskind-Hadas, Michael A. Charleston, On the Computational Complexity of the Reticulate Cophylogeny Reconstruction Problem Journal of Computational Biology. ,vol. 16, pp. 105- 117 ,(2009) , 10.1089/CMB.2008.0084
R. G. Beiko, T. J. Harlow, M. A. Ragan, Highways of gene sharing in prokaryotes Proceedings of the National Academy of Sciences of the United States of America. ,vol. 102, pp. 14332- 14337 ,(2005) , 10.1073/PNAS.0504068102
Sur les assemblages de lignes. Crelle's Journal. ,vol. 1869, pp. 185- 190 ,(1869) , 10.1515/CRLL.1869.70.185
Magnus Bordewich, Charles Semple, On the computational complexity of the rooted subtree prune and regraft distance. Annals of Combinatorics. ,vol. 8, pp. 409- 423 ,(2005) , 10.1007/S00026-004-0229-Z
C. R. Finden, A. D. Gordon, Obtaining common pruned trees Journal of Classification. ,vol. 2, pp. 255- 276 ,(1985) , 10.1007/BF01908078
Dan Gusfield, Partition-distance: A problem and class of perfect graphs arising in clustering Information Processing Letters. ,vol. 82, pp. 159- 164 ,(2002) , 10.1016/S0020-0190(01)00263-0