Inference processes in decision support systems with incomplete knowledge

作者: Alicja Wakulicz-Deja , Agnieszka Nowak-Brzezińska , Tomasz Jach

DOI: 10.1007/978-3-642-24425-4_78

关键词:

摘要: Authors propose a new approach in the optimization of inference processes decision support systems with incomplete knowledge. The idea is based on clustering large set rules from knowledge bases as long it necessary to find relevant rule quickly possible. This work highly focused results experiments regarding influence Agnes' algorithm parameters quality process. Additionally, authors present optimal amount groups formed by rules.

参考文章(19)
Jan G. Bazan, Hung Son Nguyen, Sinh Hoa Nguyen, Piotr Synak, Jakub Wróblewski, Rough set algorithms in classification problem Rough set methods and applications. pp. 49- 88 ,(2000) , 10.1007/978-3-7908-1840-6_3
Agnieszka Nowak, Roman Siminski, Alicja Wakulicz-Deja, Towards Modular Representation of Knowledge Base intelligent information systems. pp. 421- 428 ,(2006) , 10.1007/3-540-33521-8_46
Lotfi A. Zadeh, Janusz Kacprzyk, Fuzzy Logic for the Management of Uncertainty ,(1992)
Finding Groups in Data John Wiley & Sons, Inc.. ,(1990) , 10.1002/9780470316801
Jan G. Bazan, Marcin S. Szczuka, Jakub Wróblewski, A New Version of Rough Set Exploration System Lecture Notes in Computer Science. ,vol. 2475, pp. 397- 404 ,(2002) , 10.1007/3-540-45813-1_52
Vipin Kumar, Pang-Ning Tan, Michael M. Steinbach, Introduction to Data Mining ,(2013)
Witold Pedrycz, Lukasz Andrzej Kurgan, Krzysztof J. Cios, Roman W. Swiniarski, Data Mining: A Knowledge Discovery Approach ,(2007)