AMVG: Adaptive Malware Variant Generation Framework Using Machine Learning

作者: Jusop Choi , Dongsoon Shin , Hyoungshick Kim , Jason Seotis , Jin B. Hong

DOI: 10.1109/PRDC47002.2019.00055

关键词:

摘要: There are advances in detecting malware using machine learning (ML), but it is still a challenging task to detect advanced variants (e.g., polymorphic and metamorphic variations). To such variants, we first need understand the methods used generate them bypass detection methods. In this paper, introduce an adaptive variant generation (AMVG) framework study bypassing efficiently. The AMVG uses ML genetic algorithm (GA)) that satisfy specific criteria. use of GA automates generations with appropriate modules handle various input formats. For experiment, samples retrieved from theZoo, collection samples. results show can automatically varying criteria practical amount time, as well showing capabilities different

参考文章(27)
Wenke Lee, Monirul I. Sharif, Andrea Lanzi, Jonathon T. Giffin, Impeding Malware Analysis Using Conditional Code Obfuscation network and distributed system security symposium. pp. 1- 13 ,(2008)
Aditya P. Mathur, Nwokedi Idika, A Survey of Malware Detection Techniques ,(2007)
Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, Pavel Laskov, Learning and Classification of Malware Behavior international conference on detection of intrusions and malware and vulnerability assessment. pp. 108- 125 ,(2008) , 10.1007/978-3-540-70542-0_6
Jonathan Oliver, Chun Cheng, Yanggui Chen, TLSH -- A Locality Sensitive Hash 2013 Fourth Cybercrime and Trustworthy Computing Workshop. pp. 7- 13 ,(2013) , 10.1109/CTC.2013.9
Ilsun You, Kangbin Yim, Malware Obfuscation Techniques: A Brief Survey broadband and wireless computing, communication and applications. pp. 297- 300 ,(2010) , 10.1109/BWCCA.2010.85
Jean-Marie Borello, Ludovic Mé, Code obfuscation techniques for metamorphic viruses Journal in Computer Virology. ,vol. 4, pp. 211- 220 ,(2008) , 10.1007/S11416-008-0084-2
Ivan Firdausi, Charles lim, Alva Erwin, Anto Satriyo Nugroho, Analysis of Machine learning Techniques Used in Behavior-Based Malware Detection international conference on advances in computing, control, and telecommunication technologies. pp. 201- 203 ,(2010) , 10.1109/ACT.2010.33
Andrea Cani, Marco Gaudesi, Ernesto Sanchez, Giovanni Squillero, Alberto Tonda, Towards automated malware creation: code generation and code integration acm symposium on applied computing. pp. 157- 160 ,(2014) , 10.1145/2554850.2555157
Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, J. D. Tygar, Can machine learning be secure? Proceedings of the 2006 ACM Symposium on Information, computer and communications security - ASIACCS '06. pp. 16- 25 ,(2006) , 10.1145/1128817.1128824
Emre Aydogan, Sevil Sen, Automatic Generation of Mobile Malwares Using Genetic Programming Applications of Evolutionary Computation. pp. 745- 756 ,(2015) , 10.1007/978-3-319-16549-3_60