Chapter 1 Topological Principles for Ordinary Differential Equations

作者: Jan Andres

DOI: 10.1016/S1874-5725(06)80005-2

关键词:

摘要: Publisher Summary This chapter discusses topological principles for ordinary differential equations. The classical courses of equations (ODEs) start either with the Peano existence theorem or Picard-Lindelof and uniqueness theorem, both related to Cauchy (initial value) problems. describes applied fixed point general methods solvability boundary value It also various theorems such as Sharkovskii cycle coexistence T. Matsuoka's theorem. illustrates (multivalued) ODEs. All solutions problems under consideration (even in Banach spaces) can be understood at least sense Caratheodory. Thus, view indicated relationship given chapter, many obtained results employed solving optimal control problems, systems variable structure, implicit etc.

参考文章(74)
A. Augustynowicz, Z. Dzedzej, B. D. Gelman, The Solution Set to BVP for Some Functional Differential Inclusions Set-valued Analysis. ,vol. 6, pp. 257- 263 ,(1998) , 10.1023/A:1008618606813
Jan Andres, Nielsen Number and Multiplicity Results for Multivalued Boundary Value Problems Nonlinear Analysis and its Applications to Differential Equations. pp. 175- 187 ,(2001) , 10.1007/978-1-4612-0191-5_9
Jan Andres, Applicable Fixed Point Principles Springer, Dordrecht. pp. 687- 739 ,(2005) , 10.1007/1-4020-3222-6_19
Robert F. Brown, The Lefschetz fixed point theorem ,(1971)
E. Kamke, Zur theorie der differentialgleichung y'=f(x, y) Acta Mathematica. ,vol. 52, pp. 327- 339 ,(1929) , 10.1007/BF02592690
Jan Andres, Alberto M. Bersani, Almost-periodicity problem as a fixed-point problem for evolution inclusions Topological Methods in Nonlinear Analysis. ,vol. 18, pp. 337- 349 ,(2001) , 10.12775/TMNA.2001.038
M. A. Krasnoselʹskii, Christian C. Fenske, P. P. Zabreĭko, Geometrical Methods of Nonlinear Analysis ,(1984)
Jean L. Mawhin, Robert E. Gaines, Coincidence degree and nonlinear differential equations ,(1977)