Regularity properties of non-negative sparsity sets

作者: Matthew K. Tam

DOI: 10.1016/J.JMAA.2016.10.040

关键词:

摘要: Abstract This paper investigates regularity properties of two non-negative sparsity sets: sparse vectors, and low-rank positive semi-definite matrices. Novel formulae for their Mordukhovich normal cones are given used to formulate sufficient conditions non-convex notions hold. Our results provide a useful tool justifying the application projection methods certain rank constrained feasibility problems.

参考文章(33)
Jonathan M. Borwein, D. Russell Luke, Entropic regularization of the l 0 function Fixed-point algorithms for inverse problems in science and engineering, 2011, ISBN 978-1-4419-9568-1, págs. 65-92. pp. 65- 92 ,(2011) , 10.1007/978-1-4419-9569-8_5
Patrick L. Combettes, Heinz H. Bauschke, Convex Analysis and Monotone Operator Theory in Hilbert Spaces ,(2011)
Jonathan M. Borwein, Matthew K. Tam, Reflection methods for inverse problems with applications to protein conformation determination arXiv: Optimization and Control. pp. 83- 100 ,(2017) , 10.1007/978-981-10-4774-9_5
Hristo Sendov, Variational Spectral Analysis University of Waterloo. ,(2000)
Jonathan M. Borwein, Adrian S Lewis, Convex analysis and nonlinear optimization : theory and examples Springer. ,(2000)
Bernd Grtner, Jiri Matousek, Approximation Algorithms and Semidefinite Programming ,(2012)
R. A. Poliquin, R. T. Rockafellar, L. Thibault, Local differentiability of distance functions Transactions of the American Mathematical Society. ,vol. 352, pp. 5231- 5249 ,(2000) , 10.1090/S0002-9947-00-02550-2
T.L. Hayden, Jim Wells, Approximation by matrices positive semidefinite on a subspace Linear Algebra and its Applications. ,vol. 109, pp. 115- 130 ,(1988) , 10.1016/0024-3795(88)90202-9
Hou-Duo Qi, Xiaoming Yuan, Computing the nearest Euclidean distance matrix with low embedding dimensions Mathematical Programming. ,vol. 147, pp. 351- 389 ,(2014) , 10.1007/S10107-013-0726-0