Convex Feasibility Problems

作者: Alexander J. Zaslavski

DOI: 10.1007/978-3-319-33255-0_10

关键词:

摘要: We use subgradient projection algorithms for solving convex feasibility problems. show that almost all iterates, generated by a algorithm in Hilbert space, are approximate solutions. Moreover, we obtain an estimate of the number iterates which not In finite-dimensional case, study behavior presence computational errors. Provided errors bounded, prove our generates good solution after certain iterates.

参考文章(41)
Dean Richert, Jorge Cortes, Robust Distributed Linear Programming IEEE Transactions on Automatic Control. ,vol. 60, pp. 2567- 2582 ,(2015) , 10.1109/TAC.2015.2404451
Salar Rahili, Wei Ren, Distributed Continuous-Time Convex Optimization With Time-Varying Cost Functions IEEE Transactions on Automatic Control. ,vol. 62, pp. 1590- 1605 ,(2017) , 10.1109/TAC.2016.2593899
Christopher David Godsil, Gordon Royle, Algebraic Graph Theory ,(2009)
Jonathan M. Borwein, Qiji J. Zhu, Techniques of variational analysis ,(2005)
Chung-Yang (Ric) Huang, Chao-Yue Lai, Kwang-Ting (Tim) Cheng, Fundamentals of algorithms Electronic Design Automation. pp. 173- 234 ,(2009) , 10.1016/B978-0-12-374364-0.50011-4
Samuel Martin, Julien M. Hendrickx, Continuous-Time Consensus Under Non-Instantaneous Reciprocity IEEE Transactions on Automatic Control. ,vol. 61, pp. 2484- 2495 ,(2016) , 10.1109/TAC.2015.2506262
Guodong Shi, Karl Henrik Johansson, Yiguang Hong, Reaching an Optimal Consensus: Dynamical Systems That Compute Intersections of Convex Sets IEEE Transactions on Automatic Control. ,vol. 58, pp. 610- 622 ,(2013) , 10.1109/TAC.2012.2215261