Threshold Accepting Approach to Improve Bound-based Approximations for Portfolio Optimization

作者: Daniel Kuhn , Panos Parpas , Berç Rustem

DOI: 10.1007/978-3-540-77958-2_1

关键词:

摘要: A discretization scheme for a portfolio selection problem is discussed. The model benchmark relative, mean-variance optimization in continuous time. In order to make the computationally tractable, it discretized time and space. This approximation designed such way that optimal values of approximate problems yield bounds on value original problem. convergence discussed as granularity increased. threshold accepting algorithm attempts find most accurate among all discretizations given complexity also proposed. Promising results numerical case study are provided.

参考文章(28)
Panos M. Pardalos, Vassilis K. Tsitsiringos, Financial Engineering, E-commerce and Supply Chain ,(2010)
Manfred Gilli, Peter Winker, Heuristic Optimization Methods in Econometrics John Wiley & Sons, Ltd. pp. 81- 119 ,(2009) , 10.1002/9780470748916.CH3
John R. Birge, Franois Louveaux, Introduction to Stochastic Programming ,(2011)
Manfred Gilli, Evis Këllezi, The Threshold Accepting Heuristic for Index Tracking Social Science Research Network. pp. 1- 18 ,(2002) , 10.1007/978-1-4757-5226-7_1
Nalan Gulpinar, Berc Rustem, Reuben Settergren, Multistage Stochastic Programming in Computational Finance Springer, Boston, MA. pp. 35- 47 ,(2002) , 10.1007/978-1-4757-3613-7_3
Karl Frauendorfer, Barycentric scenario trees in convex multistage stochastic programming Mathematical Programming. ,vol. 75, pp. 277- 293 ,(1996) , 10.1007/BF02592156
Nalan Gülpınar, Berç Rustem, Worst-case robust decisions for multi-period mean–variance portfolio optimization European Journal of Operational Research. ,vol. 183, pp. 981- 1000 ,(2007) , 10.1016/J.EJOR.2006.02.046
Murray Rosenblatt, Remarks on a Multivariate Transformation Annals of Mathematical Statistics. ,vol. 23, pp. 470- 472 ,(1952) , 10.1214/AOMS/1177729394
Xun Yu Zhou, Duan Li, Continuous-Time Mean-Variance Portfolio Selection: A Stochastic LQ Framework Applied Mathematics and Optimization. ,vol. 42, pp. 19- 33 ,(2000) , 10.1007/S002450010003
R. T. Rockafellar, R. J-B. Wets, The Optimal Recourse Problem in Discrete Time: $L^1 $-Multipliers for Inequality Constraints SIAM Journal on Control and Optimization. ,vol. 16, pp. 16- 36 ,(1978) , 10.1137/0316002