REAL-ANALYTICITY OF HAUSDORFF DIMENSION OF JULIA SETS ALONG THE PARABOLIC ARCS OF THE MULTICORNS

作者: Sabyasachi Mukherjee

DOI:

关键词:

摘要: SABYASACHI MUKHERJEEAbstract. In this article, we take a dimension-theoretic look at the connect-edness loci of unicritical anti-polynomials, known as multicorns and provea regularity property Hausdorff dimension Julia sets on per-sistently parabolic part these parameter spaces.The boundaries odd period hyperbolic components multicornscontain real-analytic arcs consisting quasi-conformally conjugate parabolicparameters. The principal result paper asserts that di-mension is function alongthese arcs. We also prove, along way, dynamically nat-ural parametrization has non-vanishing derivative allbut (possibly) finitely many points.Our main remains true for more general provided allthe active critical points converge to attracting or cycles.

参考文章(18)
R. Daniel Mauldin, Mariusz Urbanski, Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets ,(2003)
Dierk Schleicher, John Hamal Hubbard, Multicorns are not path connected arXiv: Dynamical Systems. pp. 73- 102 ,(2014) , 10.2307/J.CTT5VJV7B.9
John Willard Milnor, Dynamics in one complex variable ,(2000)
John W. Milnor, Remarks on iterated cubic maps Experimental Mathematics. ,vol. 1, pp. 5- 24 ,(1992)
SABYASACHI MUKHERJEE, SHIZUO NAKANE, DIERK SCHLEICHER, On Multicorns and Unicorns II: Bifurcations in Spaces of Antiholomorphic Polynomials arXiv: Dynamical Systems. ,(2014) , 10.1017/ETDS.2015.65
Mariusz Urbański, Measures and dimensions in conformal dynamics Bulletin of the American Mathematical Society. ,vol. 40, pp. 281- 321 ,(2003) , 10.1090/S0273-0979-03-00985-6
M. Denker, M. Urbański, Hausdorff and Conformal Measures on Julia Sets with a Rationally Indifferent Periodic Point Journal of The London Mathematical Society-second Series. pp. 107- 118 ,(1991) , 10.1112/JLMS/S2-43.1.107
NEIL DOBBS, Nice sets and invariant densities in complex dynamics Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 150, pp. 157- 165 ,(2011) , 10.1017/S0305004110000265
Peter Walters, A Variational Principle for the Pressure of Continuous Transformations American Journal of Mathematics. ,vol. 97, pp. 937- ,(1975) , 10.2307/2373682