Robust subspace computation using L1 norm

作者: Takeo Kanade , Qifa Ke

DOI:

关键词:

摘要: Linear subspace has many important applications in computer vision, such as structure from motion, motion estimation, layer extraction, object recognition, and tracking. Singular Value Decomposition (SVD) algorithm is a standard technique to compute the input data. The SVD algorithm, however, sensitive outliers it uses L2 norm metric, can not handle missing data either. In this paper, we propose using L1 metric subspace. We show that robust present two algorithms optimize metric: weighted median quadratic programming algorithm. views conclusions contained document are those of authors should be interpreted representing official policies, either expressed or implied, Carnegie Mellon University U.S. Government.

参考文章(16)
Michael J. Black, Allan D. Jepson, EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation european conference on computer vision. pp. 329- 342 ,(1996) , 10.1007/BFB0015548
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data Via theEMAlgorithm Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 39, pp. 1- 22 ,(1977) , 10.1111/J.2517-6161.1977.TB01600.X
K. Ruben Gabriel, S. Zamir, Lower Rank Approximation of Matrices by Least Squares With Any Choice of Weights Technometrics. ,vol. 21, pp. 489- 498 ,(1979) , 10.1080/00401706.1979.10489819
M. Irani, Multi-frame optical flow estimation using subspace constraints international conference on computer vision. ,vol. 1, pp. 626- 633 ,(1999) , 10.1109/ICCV.1999.791283
Sam T. Roweis, EM Algorithms for PCA and SPCA neural information processing systems. ,vol. 10, pp. 626- 632 ,(1997)
Michael E. Tipping, Christopher M. Bishop, Probabilistic Principal Component Analysis Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 61, pp. 611- 622 ,(1999) , 10.1111/1467-9868.00196
Robert E Schapire, Michael Collins, S. Dasgupta, A Generalization of Principal Components Analysis to the Exponential Family neural information processing systems. ,vol. 14, pp. 617- 624 ,(2001)
Matthew Turk, Alex Pentland, Eigenfaces for recognition Journal of Cognitive Neuroscience. ,vol. 3, pp. 71- 86 ,(1991) , 10.1162/JOCN.1991.3.1.71
Carlo Tomasi, Takeo Kanade, Shape and motion from image streams under orthography: a factorization method International Journal of Computer Vision. ,vol. 9, pp. 137- 154 ,(1992) , 10.1007/BF00129684
F. De la Torre, M.J. Black, Robust principal component analysis for computer vision international conference on computer vision. ,vol. 1, pp. 362- 369 ,(2001) , 10.1109/ICCV.2001.937541