Lagrangians forn point masses at the second post-Newtonian approximation of general relativity

作者: Thibault Damour , Gerhard Schäfer

DOI: 10.1007/BF00773685

关键词:

摘要: We study the effect of an infinitesimal coordinate transformation on Lagrangian and metric functional a system ofn point masses. show how to compute Lagrangians masses at second postNewtonian approximation general relativity in different systems. The are shown depend accelerations except special class coordinates. This includes coordinates associated with canonical formalism Arnowitt, Deser, Misner, but excludes most other systems used literature (notably harmonic one).

参考文章(14)
L. Infeld, Motion and relativity ,(1960)
B. M. Barker, R. F. O'Connell, Time transformations in post-Newtonian Lagrangians Physical Review D. ,vol. 29, pp. 2721- 2725 ,(1984) , 10.1103/PHYSREVD.29.2721
S. Chandrasekhar, Yavuz Nutku, The second post-Newtonian equations of hydrodynamics in general relativity The Astrophysical Journal. ,vol. 158, pp. 55- ,(1969) , 10.1086/150171
T. Ohta, H. Okamura, T. Kimura, K. Hiida, Coordinate condition and higher order gravitational potential in canonical formalism Progress of Theoretical Physics. ,vol. 51, pp. 1598- 1612 ,(1974) , 10.1143/PTP.51.1598
Tadayuki Ohta, Hiroshi Okamura, Toshiei Kimura, Kichiro Hiida, Physically Acceptable Solution of Einstein’s Equation for Many-Body System Progress of Theoretical Physics. ,vol. 50, pp. 492- 514 ,(1973) , 10.1143/PTP.50.492
L. Landau, E. Lifshitz, William Rarita, The Classical Theory of Fields Physics Today. ,vol. 5, pp. 25- 25 ,(1952) , 10.1063/1.3067575
B.M. Barker, R.F. O'Connell, Acceleration-dependent lagrangians and equations of motion Physics Letters A. ,vol. 78, pp. 231- 232 ,(1980) , 10.1016/0375-9601(80)90076-6
G. Schäfer, Acceleration-dependent lagrangians in general relativity Physics Letters A. ,vol. 100, pp. 128- 129 ,(1984) , 10.1016/0375-9601(84)90947-2
G. Schafer, The Equations of Motion for an Astrophysical Binary with Accuracy 1/c5 Progress of Theoretical Physics. ,vol. 68, pp. 2191- 2193 ,(1982) , 10.1143/PTP.68.2191