Sextic potential for $\gamma$-rigid prolate nuclei

作者: P Buganu , R Budaca

DOI: 10.1088/0954-3899/42/10/105106

关键词:

摘要: The equation of the Bohr-Mottelson Hamiltonian with a sextic oscillator potential is solved for $\gamma$-rigid prolate nuclei. associated shape phase space reduced to three variables which are exactly separated. angular has spherical harmonic functions as solutions, while $\beta$ brought quasi-exactly solvable case centrifugal barrier. energies and corresponding wave given in closed form depend, up scaling factor, on single parameter. $0^{+}$ $2^{+}$ states determined, having an important role assignment some ambiguous experimental bands. Due special properties potential, model can simulate, by varying free parameter, transition from anharmonic $\beta$-soft rotor crossing through critical point. Numerical applications performed 39 nuclei: $^{98-108}$Ru, $^{100,102}$Mo, $^{116-130}$Xe, $^{132,134}$Ce, $^{146-150}$Nd, $^{150,152}$Sm, $^{152,154}$Gd, $^{154,156}$Dy, $^{172}$Os, $^{180-196}$Pt, $^{190}$Hg $^{222}$Ra. best candidates point found be $^{104}$Ru $^{120,126}$Xe, followed closely $^{128}$Xe, $^{196}$Pt $^{148}$Nd.

参考文章(66)
J. M. Arias, G. Lévai, The sextic oscillator as a γ-independent potential Physical Review C. ,vol. 69, pp. 014304- ,(2004) , 10.1103/PHYSREVC.69.014304
J. Katakura, K. Kitao, Nuclear Data Sheets for A = 126 Nuclear Data Sheets. ,vol. 97, pp. 765- 926 ,(2002) , 10.1006/NDSH.2002.0020
Dennis Bonatsos, E. A. McCutchan, R. F. Casten, R. J. Casperson, V. Werner, E. Williams, Regularities and symmetries of subsets of collective 0+ states Physical Review C. ,vol. 80, pp. 034311- ,(2009) , 10.1103/PHYSREVC.80.034311
Huang Xiaolong, Nuclear Data Sheets for A = 196 Nuclear Data Sheets. ,vol. 108, pp. 1093- 1286 ,(2007) , 10.1016/J.NDS.2007.05.001
Géza Lévai, The sextic oscillator and E(5) type nuclei Journal of Physics: Conference Series. ,vol. 205, pp. 012023- ,(2010) , 10.1088/1742-6596/205/1/012023
Pavel Cejnar, Jan Jolie, Richard F. Casten, Quantum phase transitions in the shapes of atomic nuclei Reviews of Modern Physics. ,vol. 82, pp. 2155- 2212 ,(2010) , 10.1103/REVMODPHYS.82.2155
Dennis Bonatsos, D. Lenis, D. Petrellis, P.A. Terziev, Z(5): critical point symmetry for the prolate to oblate nuclear shape phase transition Physics Letters B. ,vol. 588, pp. 172- 179 ,(2004) , 10.1016/J.PHYSLETB.2004.03.029
Jean Blachot, Nuclear Data Sheets for A = 108☆ Nuclear Data Sheets. ,vol. 91, pp. 135- 296 ,(1997) , 10.1006/NDSH.2000.0017