Face numbers of pseudomanifolds with isolated singularities

作者: Isabella Novik , Ed Swartz

DOI:

关键词:

摘要: We investigate the face numbers of simplicial complexes with Buchsbaum vertex links, especially pseudomanifolds isolated singularities. This includes deriving Dehn-Sommerville relations for singularities and establishing lower bound theorems when are also homologically isolated. give formulas Hilbert function a generic Artinian reduction ring any pure two-dimensional complex. Some examples spaces where $f$-vector can be completely characterized described. Let $\Delta$ $\Delta'$ two that homeomorphic have same $f$-vector. In \cite{MNS} question is raised whether or not functions reductions their rings identical. prove this case if PL-homeomorphic.

参考文章(21)
Walter Whiteley, Vertex Splitting in Isostatic Frameworks Université du Québec à Montréal. ,(1990)
Isabella Novik, Ed Swartz, Face rings of complexes with singularities arXiv: Commutative Algebra. ,(2009)
David Barnette, A proof of the lower bound conjecture for convex polytopes. Pacific Journal of Mathematics. ,vol. 46, pp. 349- 354 ,(1973) , 10.2140/PJM.1973.46.349
Martina Kubitzke, Eran Nevo, THE LEFSCHETZ PROPERTY FOR BARYCENTRIC SUBDIVISIONS OF SHELLABLE COMPLEXES Transactions of the American Mathematical Society. ,vol. 361, pp. 6151- 6163 ,(2009) , 10.1090/S0002-9947-09-04794-1
Ed Swartz, FACE ENUMERATION - FROM SPHERES TO MANIFOLDS Journal of the European Mathematical Society. ,vol. 11, pp. 449- 485 ,(2009) , 10.4171/JEMS/156
Mark Goresky, Robert MacPherson, Intersection homology theory Topology. ,vol. 19, pp. 135- 162 ,(1980) , 10.1016/0040-9383(80)90003-8
Gil Kalai, Rigidity and the lower bound theorem 1 Inventiones Mathematicae. ,vol. 88, pp. 125- 151 ,(1987) , 10.1007/BF01405094
Isabella Novik, Upper bound theorems for homology manifolds Israel Journal of Mathematics. ,vol. 108, pp. 45- 82 ,(1998) , 10.1007/BF02783042
Hans-Gert Gräbe, The canonical module of a Stanley-Reisner ring Journal of Algebra. ,vol. 86, pp. 272- 281 ,(1984) , 10.1016/0021-8693(84)90066-8