Using LLL-Reduction for Solving RSA and Factorization Problems

作者: Alexander May

DOI: 10.1007/978-3-642-02295-1_10

关键词:

摘要: Twenty five years ago, Lenstra, Lenstra and Lovász presented their celebrated LLL lattice reduction algorithm. Among the various applications of the LLL algorithm is a method due to …

参考文章(92)
Hung-Min Sun, Mu-En Wu, An Approach Towards Rebalanced RSA-CRT with Short Public Exponent. IACR Cryptology ePrint Archive. ,vol. 2005, pp. 53- ,(2005)
Mathias Herrmann, Alexander May, Solving Linear Equations Modulo Divisors: On Factoring Given Any Bits international conference on the theory and application of cryptology and information security. pp. 406- 424 ,(2008) , 10.1007/978-3-540-89255-7_25
Alexander May, Maike Ritzenhofen, Solving Systems of Modular Equations in One Variable: How Many RSA-Encrypted Messages Does Eve Need to Know? Public Key Cryptography – PKC 2008. pp. 37- 46 ,(2008) , 10.1007/978-3-540-78440-1_3
D. Bleichenbacher, On the Security of the KMOV Public Key Cryptosystem international cryptology conference. pp. 235- 248 ,(1997) , 10.1007/BFB0052239
Aggelos Kiayias, Moti Yung, Self Protecting Pirates and Black-Box Traitor Tracing international cryptology conference. pp. 63- 79 ,(2001) , 10.1007/3-540-44647-8_4
C. P. Schnorr, Factoring integers and computing discrete logarithms via diophantine approximation theory and application of cryptographic techniques. pp. 281- 293 ,(1991) , 10.1007/3-540-46416-6_24
Charanjit S. Jutla, On finding small solutions of modular multivariate polynomial equations theory and application of cryptographic techniques. pp. 158- 170 ,(1998) , 10.1007/BFB0054124