Chord Recognition in Symbolic Music Using Semi-Markov Conditional Random Fields.

作者: Razvan C. Bunescu , Kristen Masada

DOI:

关键词:

摘要:

参考文章(15)
Ricardo E. P. Scholz, Geber L. Ramalho, COCHONUT: RECOGNIZING COMPLEX CHORDS FROM MIDI GUITAR SEQUENCES international symposium/conference on music information retrieval. pp. 27- 32 ,(2008)
Daniele P. Radicioni, Roberto Esposito, BREVE: An HMPerceptron-Based Chord Recognition System Advances in Music Information Retrieval. ,vol. 274, pp. 143- 164 ,(2010) , 10.1007/978-3-642-11674-2_7
Christopher Raphael, Josh Stoddard, Harmonic Analysis with Probabilistic Graphical Models international symposium/conference on music information retrieval. ,(2003)
Christopher Harte, Towards automatic extraction of harmony information from music signals Queen Mary, University of London. ,(2010)
Carl Schachter, Edward Aldwell, Harmony And Voice Leading ,(1978)
David Temperley, Daniel Sleator, Modeling Meter and Harmony: A Preference-Rule Approach Computer Music Journal. ,vol. 23, pp. 10- 27 ,(1999) , 10.1162/014892699559616
Bryan Pardo, William P. Birmingham, Algorithms for Chordal Analysis Computer Music Journal. ,vol. 26, pp. 27- 49 ,(2002) , 10.1162/014892602760137167
Terry Winograd, Linguistics and the computer analysis of tonal harmony Journal of Music Theory. ,vol. 12, pp. 2- 49 ,(1968) , 10.2307/842885
Sunita Sarawagi, William W. Cohen, Semi-Markov Conditional Random Fields for Information Extraction neural information processing systems. ,vol. 17, pp. 1185- 1192 ,(2004)
H. John Maxwell, An expert system for harmonizing analysis of tonal music Understanding music with AI. pp. 334- 353 ,(1992)