On the definition and the lower semicontinuity of certain quasiconvex integrals

作者: Paolo Marcellini

DOI: 10.1016/S0294-1449(16)30379-1

关键词:

摘要: Let us consider vector-valued functions u:Ω→ℝN, defined in an open bounded set Ω⊂ℝn. f(x, ξ) be a continuous function Ω×ℝnN, quasiconvex with respect on ξ, that satisfies, for some p ≦ q, the growth conditions c1|ξ|p c2(1 + |ξ|q). The integral I(u)=∫Ωf(x,Du(x))dx is well if u∈H1,q(Ω;ℝN). We extend I(u) to u∈H1,p(Ω;ℝN), and we study its lower semicontinuity weak topology of H1,p(Ω;ℝN), order obtain existence minima.

参考文章(21)
Charles Bradfield Morrey, Multiple Integrals in the Calculus of Variations ,(1966)
J.M Ball, F Murat, W1,p-quasiconvexity and variational problems for multiple integrals Journal of Functional Analysis. ,vol. 58, pp. 225- 253 ,(1984) , 10.1016/0022-1236(84)90041-7
James Serrin, On the definition and properties of certain variational integrals Transactions of the American Mathematical Society. ,vol. 101, pp. 139- 167 ,(1961) , 10.1090/S0002-9947-1961-0138018-9
H. Lebesgue, Intégrale, Longueur, Aire Annali di Matematica Pura ed Applicata. ,vol. 7, pp. 231- 359 ,(1902) , 10.1007/BF02420592
Stuart S. Antman, The influence of elasticity on analysis: Modern developments Bulletin of the American Mathematical Society. ,vol. 9, pp. 267- 291 ,(1983) , 10.1090/S0273-0979-1983-15185-6
Norman G. Meyers, Quasi-convexity and lower semi-continuity of multiple variational integrals of any order Transactions of the American Mathematical Society. ,vol. 119, pp. 125- 149 ,(1965) , 10.1090/S0002-9947-1965-0188838-3
Lawrence C. Evans, Quasiconvexity and Partial Regularity in the Calculus of Variations Archive for Rational Mechanics and Analysis. ,vol. 95, pp. 227- 252 ,(1986) , 10.1007/978-1-4613-8704-6_7
John Macleod Ball, Discontinuous Equilibrium Solutions and Cavitation in Nonlinear Elasticity Philosophical Transactions of the Royal Society A. ,vol. 306, pp. 557- 611 ,(1982) , 10.1098/RSTA.1982.0095
Enrico Giusti, Non-parametric minimal surfaces with discontinuous and thin obstacles Archive for Rational Mechanics and Analysis. ,vol. 49, pp. 41- 56 ,(1972) , 10.1007/BF00281473