Superstrings, Knots, and Noncommutative Geometry in \(E^{{\text{(}}\infty {\text{)}}} \) Space

作者: M. S. El Naschie

DOI: 10.1023/A:1026679628582

关键词:

摘要: Within a general theory, probabilisticjustification for compactification which reduces aninfinite-dimensional spacetime $$E^{{\text{(}}\infty {\text{)}}} (n = \infty )$$ to afour-dimensional one (DT n 4) isproposed. The effective Hausdorff dimension of this spaceis is given by $$\langle \dim _{\text{H}} E^{{\text{(}}\infty \rangle d_{\text{H}} 4 + \Phi ^3 ,{\text{ where }}\Phi 1/[4 ]$$ PV number and φ (√5– 1)/2 the golden mean. derivation makes use various results from knot theory,four-manifolds, noncommutative geometry, quasiperiodictiling, Fredholm operators. In addition somerelevant analogies between $$ , statistical mechanics, Jones polynomials are drawn.This allows better insight into nature theproposed compactification, associated space, thePisot–Vijayvaraghavan 1/φ3= 4.236067977 representing its dimension. This dimensionis in turn shown be capable naturalinterpretation terms invariant andthe signature four-manifolds. brings work near context Witten andDonaldson topological quantum field theory.

参考文章(13)
Michael H. Freedman, Frank Quinn, Topology of 4-manifolds ,(1990)
P. B. Kronheimer, Simon K. Donaldson, The Geometry of Four-Manifolds ,(1990)
Charles Pisot, Répartition (mod 1) des puissances successives des nombres réels Commentarii Mathematici Helvetici. ,vol. 19, pp. 153- 160 ,(1946) , 10.1007/BF02565954
V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials Annals of Mathematics. ,vol. 126, pp. 335- 388 ,(1987) , 10.2307/1971403
Laurent Nottale, None, Scale relativity, fractal space-time and quantum mechanics Chaos, Solitons & Fractals. ,vol. 4, pp. 361- 388 ,(1994) , 10.1016/0960-0779(94)90051-5
M.S.El Naschie, The Golden Mean in Quantum Geometry, KnotTheory and Related Topics Chaos Solitons & Fractals. ,vol. 10, pp. 1303- 1307 ,(1999) , 10.1016/S0960-0779(98)00167-2
M.S. El Naschie, On the uncertainty of Cantorian geometry and the two-slit experiment Chaos, Solitons & Fractals. ,vol. 9, pp. 517- 529 ,(1998) , 10.1016/S0960-0779(97)00150-1
M.S. El Naschie, Fredholm operators and the wave-particle duality in Cantorian space Chaos Solitons & Fractals. ,vol. 9, pp. 975- 978 ,(1998) , 10.1016/S0960-0779(98)00076-9