Unsupervised Online Calibration of a c-VEP Brain-Computer Interface (BCI)

作者: Martin Spüler , Wolfgang Rosenstiel , Martin Bogdan

DOI: 10.1007/978-3-642-40728-4_28

关键词:

摘要: Brain-Computer Interfaces (BCIs) can be used to give paralyzed patients a means for communication. But so far, only supervised methods have been calibration of an online BCI. In this paper we present method that allows calibrate BCI and unsupervised. Based on offline data show the unsupervised works validate results in experiment with 8 subjects, who were able control average accuracy 85a%. We thereby shown first time is possible successful control.

参考文章(10)
M Buss, SE Eren, M Grosse-Wentrup, Unsupervised Classification for non-invasive Brain-Computer-Interfaces Automed Workshop 2007. pp. 65- 66 ,(2007)
Martin Spüler, Wolfgang Rosenstiel, Martin Bogdan, Adaptive SVM-Based classification increases performance of a MEG-Based brain-computer interface (BCI) international conference on artificial neural networks. ,vol. 1, pp. 669- 676 ,(2012) , 10.1007/978-3-642-33269-2_84
Dan Zhang, Alexander Maye, Xiaorong Gao, Bo Hong, Andreas K Engel, Shangkai Gao, An independent brain–computer interface using covert non-spatial visual selective attention Journal of Neural Engineering. ,vol. 7, pp. 016010- ,(2010) , 10.1088/1741-2560/7/1/016010
Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alex J. Smola, Robert C. Williamson, Estimating the Support of a High-Dimensional Distribution Neural Computation. ,vol. 13, pp. 1443- 1471 ,(2001) , 10.1162/089976601750264965
S.P. Kelly, E.C. Lalor, R.B. Reilly, J.J. Foxe, Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication international conference of the ieee engineering in medicine and biology society. ,vol. 13, pp. 172- 178 ,(2005) , 10.1109/TNSRE.2005.847369
Wolfgang Rosenstiel, Martin Spüler, Martin Bogdan, One Class SVM and Canonical Correlation Analysis increase performance in a c-VEP based Brain-Computer Interface (BCI) the european symposium on artificial neural networks. ,(2012)
John A. Hartigan, Clustering Algorithms ,(1975)