Rank tests of unit root hypothesis with infinite variance errors

作者: Mohammad N. Hasan

DOI: 10.1016/S0304-4076(01)00050-1

关键词:

摘要: Abstract We consider a family of rank tests based on the regression score process introduced by Gutenbrunner and Jureckova (Ann. Statist. 20 (1992) 305) to test unit root hypothesis under infinite variance innovations. Unlike finite case as studied Hasan Koenker (Econometrica 65 (1997) 133) original rankscore statistics ( T n ) exhibit simple Gaussian limiting behavior. However, sample investigations suggest correction similar what HK proposed. This corrected version S has reliable size, exhibits remarkable power even in near cases variety α -stable distributions. Also, do not depend parameter.

参考文章(34)
R. Douglas Martin, ROBUST METHODS FOR TIME SERIES Applied Time Series Analysis II#R##N#Proceedings of the Second Applied Time Series Symposium Held in Tulsa, Oklahoma, March 3–5, 1980. pp. 683- 759 ,(1981) , 10.1016/B978-0-12-256420-8.50027-7
J.N. Adichie, 11 Rank tests in linear models Handbook of Statistics. ,vol. 4, pp. 229- 257 ,(1984) , 10.1016/S0169-7161(84)04013-X
Madan Lal Puri, Marc Hallin, Rank tests for time series analysis a survey IMA. ,vol. 45, pp. 111- 154 ,(1992)
William H. DuMouchel, Estimating the Stable Index $\alpha$ in Order to Measure Tail Thickness: A Critique Annals of Statistics. ,vol. 11, pp. 1019- 1031 ,(1983) , 10.1214/AOS/1176346318
Hira L. Koul, A. K. Md. E. Saleh, Autoregression Quantiles and Related Rank-Scores Processes Annals of Statistics. ,vol. 23, pp. 670- 689 ,(1995) , 10.1214/AOS/1176324541
David A. Dickey, Wayne A. Fuller, Distribution of the Estimators for Autoregressive Time Series with a Unit Root Journal of the American Statistical Association. ,vol. 74, pp. 427- 431 ,(1979) , 10.1080/01621459.1979.10482531
M. N. Hasan, R. W. Koenker, Robust rank tests of the unit root hypothesis Econometrica. ,vol. 65, pp. 133- 161 ,(1997) , 10.2307/2171816
M. Hallin, M.L. Puri, Aligned rank tests for linear models with autocorrelated error terms Journal of Multivariate Analysis. ,vol. 50, pp. 175- 237 ,(1994) , 10.1006/JMVA.1994.1040
Herman Chernoff, I. Richard Savage, ASYMPTOTIC NORMALITY AND EFFICIENCY OF CERTAIN NONPARAMETRIC TEST STATISTICS Annals of Mathematical Statistics. ,vol. 29, pp. 972- 994 ,(1958) , 10.1214/AOMS/1177706436
Bryan Campbell, Jean-Marie Dufour, Exact Nonparametric Tests of Orthogonality and Random Walk in the Presence of a Drift Parameter International Economic Review. ,vol. 38, pp. 151- 174 ,(1997) , 10.2307/2527412