Discrete-time decentralized control using the risk-sensitive performance criterion in the large population regime: A mean field approach

作者: Jun Moon , Tamer Basar

DOI: 10.1109/ACC.2015.7172082

关键词:

摘要: This paper considers a discrete-time decentralized control problem using the risk-sensitive cost function when there is large number of agents. We solve this via mean field theory. first obtain an individual robust controller that local state information and bias term related to term. then construct auxiliary system characterizes best approximation in mean-square sense agents, say N, goes infinity. prove set controllers e-Nash equilibrium, where e can be made arbitrarily close zero N → ∞. Finally, we show view relationship with risk-sensitive, H∞, LQG control, equilibrium features robustness, converges game risk-sensitivity parameter

参考文章(20)
Peter Whittle, Risk-sensitive optimal control ,(1990)
A. Bensoussan, K. C. J. Sung, S. C. P. Yam, S. P. Yung, Linear-Quadratic Mean Field Games Journal of Optimization Theory and Applications. ,vol. 169, pp. 496- 529 ,(2016) , 10.1007/S10957-015-0819-4
T. Başar, Nash Equilibria of Risk-Sensitive Nonlinear Stochastic Differential Games Journal of Optimization Theory and Applications. ,vol. 100, pp. 479- 498 ,(1999) , 10.1023/A:1022678204735
Minyi Huang, Peter E. Caines, Roland P. Malhame, Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized $\varepsilon$ -Nash Equilibria IEEE Transactions on Automatic Control. ,vol. 52, pp. 1560- 1571 ,(2007) , 10.1109/TAC.2007.904450
Minyi Huang, Large-Population LQG Games Involving a Major Player: The Nash Certainty Equivalence Principle SIAM Journal on Control and Optimization. ,vol. 48, pp. 3318- 3353 ,(2010) , 10.1137/080735370
Hamidou Tembine, Quanyan Zhu, Tamer Basar, Risk-Sensitive Mean-Field Games IEEE Transactions on Automatic Control. ,vol. 59, pp. 835- 850 ,(2014) , 10.1109/TAC.2013.2289711
Hamidou Tembine, Quanyan Zhu, Tamer Basar, Risk-Sensitive Mean-Field Stochastic Differential Games IFAC Proceedings Volumes. ,vol. 44, pp. 3222- 3227 ,(2011) , 10.3182/20110828-6-IT-1002.02247
Peter E. Caines, Minyi Huang, Roland P. Malhamé, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle Communications in Information and Systems. ,vol. 6, pp. 221- 252 ,(2006) , 10.4310/CIS.2006.V6.N3.A5
Jun Moon, Tamer Basar, Linear-quadratic risk-sensitive mean field games conference on decision and control. pp. 2691- 2696 ,(2014) , 10.1109/CDC.2014.7039801
Jean-Michel Lasry, Pierre-Louis Lions, Mean Field Games Japanese Journal of Mathematics. ,vol. 2, pp. 229- 260 ,(2007) , 10.1007/S11537-007-0657-8