Geometric Curve Evolution and Image Processing

作者: Frédéric Cao

DOI:

关键词:

摘要: Preface.- Part I. The curve smoothing problem: 1. Curve evolution and image processing 2. Rudimentary bases of geometry.- II. Theoretical evolution: 3. Geometric shortening flow 4. level sets.- III. Numerical 5. Classical numerical methods for 6. A geometrical scheme evolution.- Conclusion perspectives.- A. Proof Thm. 4.3.4.- References.- Index.

参考文章(89)
Thierry Cohignac, Reconnaissance de formes planes Paris 9. ,(1994)
Steven J. Ruuth, An algorithm for generating motion by mean curvature Springer, Berlin, Heidelberg. pp. 82- 91 ,(1996) , 10.1007/3-540-76076-8_120
Martino Bardi, Michael G Crandall, Lawrence C Evans, Halil Mete Soner, Panagiotis E Souganidis, Panagiotis E Souganidis, Front propagation: Theory and applications Springer Berlin Heidelberg. pp. 186- 242 ,(1997) , 10.1007/BFB0094298
Agnè Desolneux, Lionel Moisan, Jean-Michel Morel, Gestalt Theory and Computer Vision Seeing, Thinking and Knowing. pp. 71- 101 ,(2004) , 10.1007/1-4020-2081-3_4
Peter J. Olver, Guillermo Sapiro, Allen Tannenbaum, Affine Invariant Detection: Edge Maps, Anisotropic Diffusion, and Active Contours Acta Applicandae Mathematicae. ,vol. 59, pp. 45- 77 ,(1999) , 10.1023/A:1006295328209
Y. Giga, K. Ito, On pinching of curves moved by surface diffusion Preprint Series of Department of Mathematics, Hokkaido University. ,vol. 379, pp. 1- 12 ,(1997)
Luigi Ambrosio, Giuseppe Buttazzo, E. N. Dancer, M. K. V. Murthy, A Marino, Calculus of Variations and Partial Differential Equations: Topics on Geometrical Evolution Problems and Degree Theory ,(2000)
Joachim Weickert, Anisotropic diffusion in image processing B. G. Teubner. ,(1998)