Inversion prediction of back propagation neural network in collision analysis of anti-climbing device:

作者: Yu-Ru Li , Tao Zhu , Zhao Tang , Shou-Ne Xiao , Jun-Ke Xie

DOI: 10.1177/1687814020922050

关键词:

摘要: Targeting to improve the calculation efficiency of finite element simulation, we introduce back propagation neural network–based machine learning method carry out inversion predictio...

参考文章(22)
Suchao Xie, Xifeng Liang, Hui Zhou, Jian Li, Crashworthiness optimisation of the front-end structure of the lead car of a high-speed train Structural and Multidisciplinary Optimization. ,vol. 53, pp. 339- 347 ,(2016) , 10.1007/S00158-015-1332-Y
K. Goda, T. Nishigaito, M. Hiraishi, K. Iwasaki, A curving simulation for a monorail car Proceedings of the 2000 ASME/IEEE Joint Railroad Conference (Cat. No.00CH37110). pp. 171- 177 ,(2000) , 10.1109/RRCON.2000.869998
Tom M Mitchell, None, Machine learning and data mining Communications of The ACM. ,vol. 42, pp. 30- 36 ,(1999) , 10.1145/319382.319388
Mehmet A. Guler, Muhammed E. Cerit, Bertan Bayram, Bora Gerçeker, Emrah Karakaya, The effect of geometrical parameters on the energy absorption characteristics of thin-walled structures under axial impact loading International Journal of Crashworthiness. ,vol. 15, pp. 377- 390 ,(2010) , 10.1080/13588260903488750
Jerry Evans, Mats Berg, Challenges in simulation of rail vehicle dynamics Vehicle System Dynamics. ,vol. 47, pp. 1023- 1048 ,(2009) , 10.1080/00423110903071674
S.A. Galehdari, M. Kadkhodayan, S. Hadidi-Moud, Analytical, experimental and numerical study of a graded honeycomb structure under in-plane impact load with low velocity International Journal of Crashworthiness. ,vol. 20, pp. 387- 400 ,(2015) , 10.1080/13588265.2015.1018739
Laura Montalbán, Julia Real, Teresa Real, Mechanical characterization of railway structures based on vertical stiffness analysis and railway substructure stress state Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. ,vol. 227, pp. 74- 85 ,(2013) , 10.1177/0954409712452348