Numerical Algorithms with High Spatial Accuracy for the Fourth-Order Fractional Sub-Diffusion Equations with the First Dirichlet Boundary Conditions

作者: Cui-cui Ji , Zhi-zhong Sun , Zhao-peng Hao

DOI: 10.1007/S10915-015-0059-7

关键词:

摘要: In this paper, a compact algorithm for the fourth-order fractional sub-diffusion equations with first Dirichlet boundary conditions, which depict wave propagation in intense laser beams, is investigated. Combining average operator spatial derivative, L1 formula applied to approximate temporal Caputo derivative. A novel technique introduced deal conditions. Using mathematical induction method, we prove that presented difference scheme unconditionally stable and convergent by energy method. The convergence order $$O(\tau ^{2-\alpha }+h^4)$$O(?2-?+h4) $$L_2$$L2-norm. outline two-dimensional problem also considered. Finally, some numerical examples are provided confirm theoretical results.

参考文章(46)
Shantanu Das, None, Functional Fractional Calculus ,(2011)
G. Radons, Rainer Klages, Igor M. Sokolov, Anomalous transport : foundations and applications Wiley-VCH. ,(2008)
Alberto Carpinteri, Francesco Mainardi, Fractals and fractional calculus in continuum mechanics Springer-Verlag. ,(1997) , 10.1007/978-3-7091-2664-6
Zhi-zhong Sun, Xiaonan Wu, A fully discrete difference scheme for a diffusion-wave system Applied Numerical Mathematics. ,vol. 56, pp. 193- 209 ,(2006) , 10.1016/J.APNUM.2005.03.003
Živorad Tomovski, Trifce Sandev, Exact solutions for fractional diffusion equation in a bounded domain with different boundary conditions Nonlinear Dynamics. ,vol. 71, pp. 671- 683 ,(2013) , 10.1007/S11071-012-0710-X
L. Acedo, S. B. Yuste, An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations SIAM Journal on Numerical Analysis. ,vol. 42, pp. 1862- 1874 ,(2004) , 10.1137/030602666
P. Zhuang, F. Liu, V. Anh, I. Turner, New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation SIAM Journal on Numerical Analysis. ,vol. 46, pp. 1079- 1095 ,(2008) , 10.1137/060673114
Cui-cui Ji, Zhi-zhong Sun, A High-Order Compact Finite Difference Scheme for the Fractional Sub-diffusion Equation Journal of Scientific Computing. ,vol. 64, pp. 959- 985 ,(2015) , 10.1007/S10915-014-9956-4
Xiuling Hu, Luming Zhang, A new implicit compact difference scheme for the fourth-order fractional diffusion-wave system International Journal of Computer Mathematics. ,vol. 91, pp. 2215- 2231 ,(2014) , 10.1080/00207160.2013.871000
Ya-nan Zhang, Zhi-zhong Sun, Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation Journal of Computational Physics. ,vol. 230, pp. 8713- 8728 ,(2011) , 10.1016/J.JCP.2011.08.020