Theoretical study of geometric, optical, nonlinear optical, UV-Vis spectra and phosphorescence properties of iridium(III) complexes based on 5-nitro-2-(2′,4′-difluorophenyl)pyridyl

作者: Mohamed Boukabene , Houari Brahim , Djebar Hadji , Abdelkrim Guendouzi

DOI: 10.1007/S00214-020-2560-9

关键词:

摘要: In this work, we studied the structural, optical, nonlinear optical properties , absorption spectra and phosphorescence of four cyclometalated heteroleptic iridium complexes [Ir(dFNppy)2(PPh3)L] with dFNppy = 5-nitro-2-(2′,4′-difluorophenylpyridyl, PPh3 = triphenylphosphine, L = Cl− (1), NCS− (2), NCO− (3) N3− (4) using DFT TD-DFT methods. The electronic geometrical structures S0 T1 have been compared. Experimental bands were assigned on basis natural transition orbitales, a good agreement experience has obtained. Phosphorescence wavelengths calculated vertical adiabatic Further, linear (mean polarizability $$\left\langle \alpha \right\rangle$$, anisotropy $$\left| \right|$$), static first hyperpolarizabilities electric-field-induced second harmonic generation $$\beta_{//} \left( { - 2\omega ;\omega ,\omega } \right)$$ hyper-Rayleigh scattering (HRS) hyperpolarizability $$\beta_{\text{HRS}} \right)$$), depolarization ratio DR these are by PBE0 functional in order to understand properties. Higher $$(\alpha )$$ $$(\beta It is also observed an inverse correlation between predicted β value HOMO–LUMO energy difference (Δe).

参考文章(52)
Daniel Escudero, Walter Thiel, Benoît Champagne, Spectroscopic and second-order nonlinear optical properties of Ruthenium(II) complexes: a DFT/MRCI and ADC(2) study Physical Chemistry Chemical Physics. ,vol. 17, pp. 18908- 18912 ,(2015) , 10.1039/C5CP01884F
Zhu-Qing Chen, Xuan Shen, Jia-Xin Xu, Hao Zou, Xin Wang, Yan Xu, Dun-Ru Zhu, Iridium(III) complexes based on 5-nitro-2-(2′,4′-difluorophenyl)pyridyl: Syntheses, structures and photoluminescence properties Inorganic Chemistry Communications. ,vol. 61, pp. 152- 156 ,(2015) , 10.1016/J.INOCHE.2015.09.013
B. L. Justus, Z. H. Kafafi, A. L. Huston, Excited-state absorption-enhanced thermal optical limiting in C(60). Optics Letters. ,vol. 18, pp. 1603- 1605 ,(1993) , 10.1364/OL.18.001603
P. Jeffrey Hay, Willard R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals Journal of Chemical Physics. ,vol. 82, pp. 299- 310 ,(1985) , 10.1063/1.448975
R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions Journal of Chemical Physics. ,vol. 72, pp. 650- 654 ,(1980) , 10.1063/1.438955
A. D. McLean, G. S. Chandler, Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 Journal of Chemical Physics. ,vol. 72, pp. 5639- 5648 ,(1980) , 10.1063/1.438980
Jean-François Guillemoles, Vincenzo Barone, Laurent Joubert, Carlo Adamo, A Theoretical Investigation of the Ground and Excited States of Selected Ru and Os Polypyridyl Molecular Dyes Journal of Physical Chemistry A. ,vol. 106, pp. 11354- 11360 ,(2002) , 10.1021/JP021517V
David R. Kanis, Pascal G. Lacroix, Mark A. Ratner, Tobin J. Marks, Electronic Structure and Quadratic Hyperpolarizabilities in Organotransition-Metal Chromophores Having Weakly Coupled .pi.-Networks. Unusual Mechanisms for Second-Order Response Journal of the American Chemical Society. ,vol. 116, pp. 10089- 10102 ,(1994) , 10.1021/JA00101A030
Richard L. Martin, NATURAL TRANSITION ORBITALS Journal of Chemical Physics. ,vol. 118, pp. 4775- 4777 ,(2003) , 10.1063/1.1558471
D. C. Rodenberger, J. R. Heflin, A. F. Garito, EXCITED-STATE ENHANCEMENT OF THIRD-ORDER NONLINEAR OPTICAL RESPONSES IN CONJUGATED ORGANIC CHAINS Physical Review A. ,vol. 51, pp. 3234- 3245 ,(1995) , 10.1103/PHYSREVA.51.3234