Noncommutative projective curves and quantum loop algebras

作者: Olivier Schiffmann

DOI: 10.1215/S0012-7094-04-12114-1

关键词:

摘要: We show that the Hall algebra of category coherent sheaves on a weighted projective line over finite field provides a realization (quantized) enveloping certain nilpotent subalgebra affinization corresponding Kac-Moody algebra. In particular, this yields geometric realization quantized elliptic (or $2$-toroidal) algebras types $D_4^{(1,1)}$, $E^{(1,1)}_6$, $E^{(1,1)}_7$, and $E_{8}^{(1,1)}$ in terms sheaves on weighted lines genus one or, equivalently, terms of equivariant on curves.

参考文章(24)
Werner Geigle, Helmut Lenzing, A class of weighted projective curves arising in representation theory of finite dimensional algebras Springer, Berlin, Heidelberg. pp. 265- 297 ,(1987) , 10.1007/BFB0078849
Klaus Lamotke, Regular Solids and Isolated Singularities Advanced Lectures in Mathematics. ,(1986) , 10.1007/978-3-322-91767-6
George Lusztig, Introduction to Quantum Groups ,(1993)
Claus Michael Ringel, Tame Algebras and Integral Quadratic Forms ,(1984)
William Crawley-Boevey, Michel Van den Bergh, Absolutely indecomposable representations and Kac-Moody Lie algebras (with an appendix by Hiraku Nakajima) arXiv: Rings and Algebras. ,(2001)
Victor G. Kac, Infinite-Dimensional Lie Algebras idla. pp. 422- ,(1990) , 10.1017/CBO9780511626234
Olivier Schiffmann, The Hall algebra of a cyclic quiver and canonical bases of Fock spaces International Mathematics Research Notices. ,vol. 2000, pp. 413- 440 ,(2000) , 10.1155/S1073792800000234
Hiraku Nakajima, Quiver varieties and Kac-Moody algebras Duke Mathematical Journal. ,vol. 91, pp. 515- 560 ,(1998) , 10.1215/S0012-7094-98-09120-7
Jonathan Beck, Braid group action and quantum affine algebras Communications in Mathematical Physics. ,vol. 165, pp. 555- 568 ,(1994) , 10.1007/BF02099423