CoLe-CNN: Context-learning convolutional neural network with adaptive loss function for lung nodule segmentation.

作者: Giuseppe Pezzano , Vicent Ribas Ripoll , Petia Radeva

DOI: 10.1016/J.CMPB.2020.105792

关键词:

摘要: … The solution without MCL pays mostly in terms of sensitivity. Clearly, there is also a difference in terms of memory consumption. The weights of our MCL need more GPU memory but …

参考文章(28)
Philipp Fischer, Thomas Brox, None, U-Net: Convolutional Networks for Biomedical Image Segmentation medical image computing and computer assisted intervention. pp. 234- 241 ,(2015) , 10.1007/978-3-319-24574-4_28
Daniel A. Low, William B. Harms, Sasa Mutic, James A. Purdy, A technique for the quantitative evaluation of dose distributions Medical Physics. ,vol. 25, pp. 656- 661 ,(1998) , 10.1118/1.598248
Binsheng Zhao, Denise R. Aberle, Claudia I. Henschke, Eric A. Hoffman, Ella A. Kazerooni, Heber MacMahon, Edwin J. R. van Beek, David Yankelevitz, Alberto M. Biancardi, Peyton H. Bland, Matthew S. Brown, Roger M. Engelmann, Gary E. Laderach, Daniel Max, Richard C. Pais, David P.-Y. Qing, Rachael Y. Roberts, Amanda R. Smith, Adam Starkey, Poonam Batra, Philip Caligiuri, Ali Farooqi, Gregory W. Gladish, C. Matilda Jude, Reginald F. Munden, Iva Petkovska, Leslie E. Quint, Lawrence H. Schwartz, Baskaran Sundaram, Lori E. Dodd, Charles Fenimore, David Gur, Nicholas Petrick, John Freymann, Justin Kirby, Brian Hughes, Alessi Vande Casteele, Sangeeta Gupte, Maha Sallam, Michael D. Heath, Michael H. Kuhn, Ekta Dharaiya, Richard Burns, David S. Fryd, Marcos Salganicoff, Vikram Anand, Uri Shreter, Stephen Vastagh, Barbara Y. Croft, Laurence P. Clarke, Samuel G. Armato, Geoffrey McLennan, Luc Bidaut, Michael F. McNitt-Gray, Charles R. Meyer, Anthony P. Reeves, The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans. Medical Physics. ,vol. 38, pp. 915- 931 ,(2011) , 10.1118/1.3528204
Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, Zbigniew Wojna, Rethinking the Inception Architecture for Computer Vision computer vision and pattern recognition. pp. 2818- 2826 ,(2016) , 10.1109/CVPR.2016.308
Christian Szegedy, Vincent Vanhoucke, Alexander A. Alemi, Sergey Ioffe, Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning computer vision and pattern recognition. ,(2016)
Nassir Navab, Fausto Milletari, Seyed-Ahmad Ahmadi, V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation arXiv: Computer Vision and Pattern Recognition. ,(2016)
Yoshua Bengio, Ian Goodfellow, Aaron Courville, None, Deep Learning MIT Press. ,(2016)
Shuo Wang, Mu Zhou, Zaiyi Liu, Zhenyu Liu, Dongsheng Gu, Yali Zang, Di Dong, Olivier Gevaert, Jie Tian, Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation Medical Image Analysis. ,vol. 40, pp. 172- 183 ,(2017) , 10.1016/J.MEDIA.2017.06.014