Additive Schwarz preconditioner for the finite volume element discretization of symmetric elliptic problems

作者: L. Marcinkowski , T. Rahman , A. Loneland , J. Valdman

DOI: 10.1007/S10543-015-0581-X

关键词:

摘要: A symmetric and a nonsymmetric variant of the additive Schwarz preconditioner are proposed for the solution of a class of finite volume element discretization of the symmetric …

参考文章(37)
Dietrich Braess, Finite Elements Cambridge University Press. ,(2007) , 10.1017/CBO9780511618635
L. Ridgway Scott, Susanne C Brenner, The Mathematical Theory of Finite Element Methods ,(2007)
William D. Gropp, Barry F. Smith, Petter E. Bjørstad, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations ,(1996)
Andrea Toselli, Olof B. Widlund, Domain decomposition methods : algorithms and theory Published in <b>2005</b> in Berlin by Springer. ,(2005) , 10.1007/B137868
Marcus Sarkis, Daniel B. Szyld, Optimal left and right additive Schwarz preconditioning for minimal residual methods with Euclidean and energy norms Computer Methods in Applied Mechanics and Engineering. ,vol. 196, pp. 1612- 1621 ,(2007) , 10.1016/J.CMA.2006.03.027
J. M. Nordbotten, P. E. Bjørstad, On the relationship between the multiscale finite-volume method and domain decomposition preconditioners Computational Geosciences. ,vol. 12, pp. 367- 376 ,(2008) , 10.1007/S10596-007-9066-6
T. Chartier, R. D. Falgout, V. E. Henson, J. Jones, T. Manteuffel, S. McCormick, J. Ruge, P. S. Vassilevski, Spectral AMGe ($\rho$AMGe) SIAM Journal on Scientific Computing. ,vol. 25, pp. 1- 26 ,(2003) , 10.1137/S106482750139892X