On ultrapowers of Banach spaces of type $\mathscr L_\infty$

作者: Manuel González , Antonio Avilés , Yolanda Moreno , Félix Cabello Sánchez , Jesús M. F. Castillo

DOI:

关键词:

摘要: We prove that no ultraproduct of Banach spaces via a countably incomplete ultrafilter can contain $c_0$ complemented. This shows "result" widely used in the theory ultraproducts is wrong. then amend number results whose proofs had been infected by statement. In particular we provide for following statements: (i) All $M$-spaces, all $C(K)$-spaces, have ultrapowers isomorphic to $c_0$, as well their complemented subspaces square. (ii) No ultrapower Gurari\u \i\ space be any $M$-space. (iii) There exist not $C(K)$-space having $C(K)$-space.

参考文章(20)
P. Wojtaszczyk, Some remarks on the Gurarij space Studia Mathematica. ,vol. 41, pp. 207- 210 ,(1972) , 10.4064/SM-41-2-207-210
Manuel González, Jesús M. F. Castillo, Three-space Problems in Banach Space Theory ,(1997)
Fernando Albiac, Nigel John Kalton, Topics in Banach space theory ,(2006)
F. Cabello Sánchez, J. M. F. Castillo, N. J. Kalton, D. T. Yost, Twisted sums with $C(K)$ spaces Transactions of the American Mathematical Society. ,vol. 355, pp. 4523- 4541 ,(2003) , 10.1090/S0002-9947-03-03152-0
A. Pełczyński, Projections in certain Banach spaces Studia Mathematica. ,vol. 19, pp. 209- 228 ,(1960) , 10.4064/SM-19-2-209-228
Stefan Heinrich, Ultraproducts in Banach space theory. Crelle's Journal. ,vol. 313, pp. 72- 104 ,(1980)
Wolfgang Lusky, On separable Lindenstrauss spaces Journal of Functional Analysis. ,vol. 26, pp. 103- 120 ,(1977) , 10.1016/0022-1236(77)90006-4