ChronoSAGE: Diversifying Topic Modeling Chronologically

作者: Tomonari Masada , Atsuhiro Takasu

DOI: 10.1007/978-3-319-08010-9_51

关键词:

摘要: This paper provides an application of sparse additive generative models (SAGE) for temporal topic analysis. In our model, called ChronoSAGE, modeling results are diversified chronologically by using document timestamps. That is, word tokens generated not only in a topic-specific manner, but also time-specific manner. We firstly compare ChronoSAGE with latent Dirichlet allocation (LDA) terms pointwise mutual information to show its practical effectiveness. secondly give example time-differentiated topics, obtained as lists, usefulness trend detection.

参考文章(13)
Lawrence Cavedon, David Newman, Sarvnaz Karimi, External evaluation of topic models australasian document computing symposium. pp. 1- 8 ,(2009)
Christopher K I Williams, Carl Edward Rasmussen, Gaussian Processes for Machine Learning ,(2005)
David M Blei, Andrew Y Ng, Michael I Jordan, None, Latent dirichlet allocation Journal of Machine Learning Research. ,vol. 3, pp. 993- 1022 ,(2003) , 10.5555/944919.944937
David Heckerman, Chong Wang, David Blei, Continuous time dynamic topic models uncertainty in artificial intelligence. pp. 579- 586 ,(2008)
T. L. Griffiths, M. Steyvers, Finding scientific topics Proceedings of the National Academy of Sciences of the United States of America. ,vol. 101, pp. 5228- 5235 ,(2004) , 10.1073/PNAS.0307752101
David M. Blei, John D. Lafferty, Dynamic topic models Proceedings of the 23rd international conference on Machine learning - ICML '06. pp. 113- 120 ,(2006) , 10.1145/1143844.1143859
Margaret E. Roberts, Brandon M. Stewart, Dustin Tingley, Christopher Lucas, Jetson Leder-Luis, Shana Kushner Gadarian, Bethany Albertson, David G. Rand, Structural Topic Models for Open-Ended Survey Responses American Journal of Political Science. ,vol. 58, pp. 1064- 1082 ,(2014) , 10.1111/AJPS.12103
Noah A. Smith, Brandon M. Stewart, Brandon M. Stewart, Brendan O'Connor, Learning to Extract International Relations from Political Context meeting of the association for computational linguistics. ,vol. 1, pp. 1094- 1104 ,(2013)
M David, J Blei, D Lafferty, Correlated Topic Models neural information processing systems. ,vol. 18, pp. 147- 154 ,(2005)
David Mimno, Edmund Talley, Andrew McCallum, Miriam Leenders, Hanna Wallach, Optimizing Semantic Coherence in Topic Models empirical methods in natural language processing. pp. 262- 272 ,(2011)