Laser nitriding of metals

作者: Peter Schaaf

DOI: 10.1016/S0079-6425(00)00003-7

关键词:

摘要: Abstract Laser nitriding can be described as the irradiation of metal surfaces by short laser pulses in nitrogen containing atmospheres. This may lead to a strong take-up into and nitride formation which improve metal’s surface properties, e.g. hardness or corrosion wear resistance. Here, iron, carbon steel, stainless aluminum was investigated employing combination complementary methods. Ion beam analysis (Rutherford Backscattering Spectroscopy Resonant Nuclear Reaction Analysis) employed for element isotope profiling. Mossbauer spectroscopy X-ray diffraction were used phase analysis. Surface profilometry, optical electron microscopy revealed topography morphology obtained after nitriding. Microhardness measurements nanoindentation technique characterized mechanical properties treatment. By this methods it became possible resolve influence treatment parameters (laser fluence, number pulses, spot size, spatial intensity distribution, gas pressure) different materials treated (iron, steels steel). It is shown that complex process, composed several superimposed effects. heating, melting evaporation with plasma generation laser-supported absorption waves are essentials process. Pressure- plasma-enhanced dissolution diffusion macroscopic material transport (piston effect, convection, fall-out) further important effects determining results. Additional marker experiments treatments isotopically enriched atmospheres allowed analyze these develop scenarios process mechanisms. A simulation depth profiles single irradiations derived, whose results good agreement experimentally observed profiles.

参考文章(333)
Helmut Kunst, Dieter Liedtke, Badnitrieren von Eisenwerkstoffen — Untersuchungen an Nitridschichten Springer Berlin Heidelberg. pp. 39- 109 ,(1983) , 10.1007/978-3-642-82059-5_2
Hideaki Sawada, Atsushi Nogami, Tooru Matsumiya, Tamio Oguchi, Structural, electronic, and magnetic properties of Fe16N2. Physical Review B. ,vol. 50, pp. 10004- 10008 ,(1994) , 10.1103/PHYSREVB.50.10004
Mois Ilia Aroyo, H Wondratschek, International tables for crystallography Kluwer. ,(2002)
Ming-Zhu Huang, W. Y. Ching, Spin-density distribution in ferromagnetic alpha "-Fe16N2. Physical Review B. ,vol. 51, pp. 3222- 3225 ,(1995) , 10.1103/PHYSREVB.51.3222
B. Keisch, A detector for efficient backscatter Mössbauer effect spectroscopy Nuclear Instruments and Methods. ,vol. 104, pp. 237- 240 ,(1972) , 10.1016/0029-554X(72)90328-X
Martin F. Allmen, Coupling of Laser Radiation to Metals and Semiconductors Physical Processes in Laser-Materials Interactions. pp. 49- 75 ,(1983) , 10.1007/978-1-4684-4322-6_2
I. J. Spalding, Characteristics of Laser Beams for Machining Physical Processes in Laser-Materials Interactions. pp. 1- 47 ,(1983) , 10.1007/978-1-4684-4322-6_1
G. Amsel, D. David, La microanalyse de l'azote par l'observation directe de réactions nucléaires applications Revue de Physique Appliquée. ,vol. 4, pp. 383- 391 ,(1969) , 10.1051/RPHYSAP:0196900403038300
S. Ariely, M. Bamberger, H. Hügel, P. Schaaf, Solidification and Phase Transformation in AISI 1045 Steel Laser Surface Alloyed with TiC International Congress on Applications of Lasers & Electro-Optics. ,vol. 1993, pp. 893- ,(1993) , 10.2351/1.5058656
Paul A. Flinn, A Mössbauer Backscatter Spectrometer with Full Data Processing Capability Mössbauer Effect Methodology. pp. 245- 258 ,(1974) , 10.1007/978-1-4684-0937-6_13