Symbiosis, complexification and simplicity under GP

作者: Peter Lichodzijewski , Malcolm I. Heywood

DOI: 10.1145/1830483.1830640

关键词:

摘要: Models of Genetic Programming (GP) frequently reflect a neo-Darwinian view to evolution in which inheritance is based on process gradual refinement and the resulting solutions take form single monolithic programs. Conversely, introducing an explicitly symbiotic model makes divide-and-conquer metaphor for problem decomposition central evolution. Benchmarking gradualist versus models under common evolutionary framework illustrates that not only does symbiosis result more accurate solutions, but are also much simpler terms instruction attribute count over wide range classification domains.

参考文章(22)
Isabelle Guyon, Steve Gunn, Lotfi A. Zadeh, Masoud Nikravesh, Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing) Springer-Verlag New York, Inc.. ,(2006)
Andrew R. McIntyre, Malcolm I. Heywood, Pareto Cooperative-Competitive Genetic Programming: A Classification Benchmarking Study Springer, Boston, MA. pp. 1- 18 ,(2009) , 10.1007/978-0-387-87623-8_4
Malcolm I. Heywood, Peter Lichodzijewski, Symbiogenesis as a mechanism for building complex adaptive systems: a review european conference on applications of evolutionary computation. pp. 51- 60 ,(2010) , 10.1007/978-3-642-12239-2_6
Peter Lichodzijewski, Malcolm I. Heywood, GP Classifier Problem Decomposition Using First-Price and Second-Price Auctions Lecture Notes in Computer Science. pp. 137- 147 ,(2007) , 10.1007/978-3-540-71605-1_13
Justinian P. Rosca, Dana H. Ballard, Hierarchical Self-Organization in Genetic Programming Machine Learning Proceedings 1994. pp. 251- 258 ,(1994) , 10.1016/B978-1-55860-335-6.50038-6
Jason M. Daida, Stephen A. Stanhope, Catherine S. Grasso, Steven J. Ross, Symbionticism and Complex Adaptive Systems I: Implications of Having Symbiosis Occur in Nature. Evolutionary Programming. pp. 177- 186 ,(1996)
John Doucette, Peter Lichodzijewski, Malcolm Heywood, Evolving Coevolutionary Classifiers Under Large Attribute Spaces Genetic Programming Theory and Practice. pp. 37- 54 ,(2010) , 10.1007/978-1-4419-1626-6_3
Michal Lemczyk, Malcolm I. Heywood, Training Binary GP Classifiers Efficiently: A Pareto-coevolutionary Approach Lecture Notes in Computer Science. pp. 229- 240 ,(2007) , 10.1007/978-3-540-71605-1_21
Edwin D. de Jong, A Monotonic Archive for Pareto-Coevolution Evolutionary Computation. ,vol. 15, pp. 61- 93 ,(2007) , 10.1162/EVCO.2007.15.1.61