Comparison of Bayesian nonparametric density estimation methods

作者: Adel Bedoui , Ori Rosen

DOI: 10.1080/03610926.2020.1864828

关键词:

摘要: In this paper, we propose a nonparametric Bayesian approach for Lindsey and penalized Gaussian mixtures methods. We compare these methods with the Dirichlet process mixture model. Our is a...

参考文章(28)
Ricardo Sandes Ehlers, Marcelo Hartmann, Bayesian inference for generalized extreme value distributions via Hamiltonian Monte Carlo Communications in Statistics - Simulation and Computation. ,vol. 46, pp. 5285- 5302 ,(2017) , 10.1080/03610918.2016.1152365
David J. Aldous, Exchangeability and related topics Lecture Notes in Mathematics. ,vol. 1117, pp. 1- 198 ,(1985) , 10.1007/BFB0099421
Bradley Efron, Large-Scale Inference Cambridge University Press. ,(2010) , 10.1017/CBO9780511761362
Thomas S. Ferguson, BAYESIAN DENSITY ESTIMATION BY MIXTURES OF NORMAL DISTRIBUTIONS Recent Advances in Statistics#R##N#Papers in Honor of Herman Chernoff on his Sixtieth Birthday. pp. 287- 302 ,(1983) , 10.1016/B978-0-12-589320-6.50018-6
Hemant Ishwaran, Lancelot F James, Approximate Dirichlet process computing in finite normal mixtures: Smoothing and prior information Journal of Computational and Graphical Statistics. ,vol. 11, pp. 508- 532 ,(2002) , 10.1198/106186002411
Radford M. Neal, MCMC Using Hamiltonian Dynamics arXiv: Computation. pp. 139- 188 ,(2011) , 10.1201/B10905-10
Christian Schellhase, Göran Kauermann, Density estimation and comparison with a penalized mixture approach Computational Statistics. ,vol. 27, pp. 757- 777 ,(2012) , 10.1007/S00180-011-0289-6
Charles E. Antoniak, Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems Annals of Statistics. ,vol. 2, pp. 1152- 1174 ,(1974) , 10.1214/AOS/1176342871
E. A. Nadaraya, On Estimating Regression Theory of Probability and Its Applications. ,vol. 9, pp. 141- 142 ,(1964) , 10.1137/1109020