Vandermonde varieties, mirror spaces, and the cohomology of symmetric semi-algebraic sets

作者: Cordian Riener , Saugata Basu

DOI:

关键词:

摘要: Let $\mathrm{R}$ be a real closed field, $d,k \in \mathbb{Z}_{> 0}$, $\mathbf{y} =(y_1,\ldots,y_d) \mathrm{R}^d$, and let $V_{d,\mathbf{y}}^{(k)}$ denote the Vandermonde variety defined by $p_1^{(k)} = y_1, \ldots, p_d^{(k)} y_d$, where $p_j^{(k)} \sum_{i=1}^{k} X_i^j$. Then, cohomology groups $\mathrm{H}^*(V_{d,\mathbf{y}}^{(k)},\mathbb{Q})$ have structure of $\mathfrak{S}_k$-modules. We prove that for all partitions $\lambda \vdash k$, $3 0, P < \mathcal{P} \subset \mathrm{D}[X_1,\ldots,X_k]^{\mathfrak{S}_k}_{\leq d}$, $\mathrm{D}$ is an ordered domain contained in $\mathrm{R}$, computes isotypic decomposition, as well ranks first $(\ell+1)$ groups, symmetric semi-algebraic set $\Phi$. The complexity this algorithm (measured number arithmetic operations $\mathrm{D}$) bounded polynomial $k$ $\mathrm{card}(\mathcal{P})$ (for fixed $d$ $\ell$). This result contrasts with $\mathbf{PSPACE}$-hardness problem computing just semi algebraically connected components (i.e. rank $0$-th group) general (non-symmetric) case $d \geq 2$, due to Reif.

参考文章(31)
Michael W. Davis, The geometry and topology of Coxeter groups Princeton Univ. Press. ,(2008)
Jacques Tits, Ralph Duncan James, On buildings and their applications Proceedings of the International Congress of Mathematicians. pp. 209- 220 ,(1975)
Ludwig Bröcker, On symmetric semialgebraic sets and orbit spaces Banach Center Publications. ,vol. 44, pp. 37- 50 ,(1998) , 10.4064/-44-1-37-50
S. Blum, L., Cucker, F., Shub, M., Smale, Complexity and Real Computation ,(1997)
Paul Erd�s, Joseph Lehner, of a positive integer Duke Mathematical Journal. ,vol. 8, pp. 335- 345 ,(1941) , 10.1215/S0012-7094-41-00826-8
Saugata Basu, Richard Pollack, Marie-Françoise Roy, Computing roadmaps of semi-algebraic sets on a variety Journal of the American Mathematical Society. ,vol. 13, pp. 55- 82 ,(1999) , 10.1090/S0894-0347-99-00311-2
Saugata Basu, Marie-Françoise Roy, Richard Pollack, Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics) Springer-Verlag New York, Inc.. ,(2006)
Saugata Basu, Richard Pollack, Marie-FrancÇoise Roy, Computing the euler--poincaré characteristics of sign conditions Computational Complexity. ,vol. 14, pp. 53- 71 ,(2005) , 10.1007/S00037-005-0190-1