Different Orthocomplementations on the Subspace Lattice of a Finite-Dimensional Complex Vector Space

作者: Georges Chevalier

DOI: 10.1023/A:1003673317836

关键词:

摘要: In this paper we prove, by using real closed fields and model theory, the followingresult: for any integer n ≥ 3, there exist, on lattice of all subspaces thevector space Cn, 2(2K0)orthocomplementations leading to nonisomorphic structuresof orthomodular lattices.

参考文章(5)
Garrett Birkhoff, Ordered Sets in Geometry Springer, Dordrecht. pp. 407- 443 ,(1982) , 10.1007/978-94-009-7798-3_14
Veeravalli S. Varadarajan, Geometry of quantum theory ,(1968)
Saharon Shelah, The number of non-isomorphic models of an unstable first-order theory Israel Journal of Mathematics. ,vol. 9, pp. 473- 487 ,(1971) , 10.1007/BF02771463
Garrett Birkhoff, John Von Neumann, The Logic of Quantum Mechanics The Annals of Mathematics. ,vol. 37, pp. 823- ,(1936) , 10.2307/1968621