FRACTIONAL CATTENEO-TYPE EQUATIONS AND GENERALIZED THERMOELASTICITY

作者: Y. Z. Povstenko

DOI: 10.1080/01495739.2010.511931

关键词:

摘要: Following Compte and Metzler, the generalized Cattaneo-type equations with time-fractional derivatives are considered. The corresponding theory of thermal stresses is formulated. proposed theory, on one hand, interpolates Lord Shulman thermoelasticity without energy dissipation Green Naghdi and, other generalizes based fractional heat conduction equation. fundamental solution to nonhomogeneous telegraph equation as well obtained in one-dimensional axisymmetric cases.

参考文章(25)
Rudolf Gorenflo, Francesco Mainardi, Daniele Moretti, Paolo Paradisi, Time Fractional Diffusion: A Discrete Random Walk Approach Nonlinear Dynamics. ,vol. 29, pp. 129- 143 ,(2002) , 10.1023/A:1016547232119
Martin Ostoja-Starzewski, Martin Ostoja-Starzewski, Józef Ignaczak, Thermoelasticity with Finite Wave Speeds ,(2009)
Francesco Mainardi, Rudolf Gorenflo, Fractional Calculus: Integral and Differential Equations of Fractional Order arXiv: Mathematical Physics. ,(2008)
T. A. A. B., A. Erdelyi, Tables of Integral Transforms. I The Mathematical Gazette. ,vol. 39, pp. 337- ,(1955) , 10.2307/3608613
Richard B Hetnarski, M Reza Eslami, GML Gladwell, Thermal Stresses -- Advanced Theory and Applications ,(2010)
Basic Equations of Thermoelasticity John Wiley & Sons, Inc.. pp. 197- 220 ,(2011) , 10.1002/9781118093184.CH5
Oleg Igorevich Marichev, Stefan G Samko, Anatoly A Kilbas, Fractional Integrals and Derivatives: Theory and Applications ,(1993)
Hari M Srivastava, Anatoly A Kilbas, Juan J Trujillo, Theory and Applications of Fractional Differential Equations ,(2006)
H.W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity Journal of the Mechanics and Physics of Solids. ,vol. 15, pp. 299- 309 ,(1967) , 10.1016/0022-5096(67)90024-5
D. S. Chandrasekharaiah, Hyperbolic Thermoelasticity: A Review of Recent Literature Applied Mechanics Reviews. ,vol. 51, pp. 705- 729 ,(1998) , 10.1115/1.3098984