Multioverlap Simulations of the 3D Edwards-Anderson Ising Spin Glass

作者: Bernd A. Berg , Wolfhard Janke

DOI: 10.1103/PHYSREVLETT.80.4771

关键词:

摘要: We introduce a novel method for numerical spin glass investigations: Simulations of two replica at fixed temperature, weighted to achieve broad distribution the Parisi overlap parameter q (multioverlap). demonstrate feasibility approach by studying 3D Edwards-Anderson Ising (J{sub ik}={plus_minus}1) in broken phase ({beta}=1). This makes it possible obtain reliable results about tunneling barriers. In addition, our indicate nontrivial scaling behavior canonical distributions not only freezing point but also deep phase. {copyright} {ital 1998} The American Physical Society}

参考文章(13)
M. Mezard, G. Parisi, M. A. Virasoro, David J. Thouless, Spin Glass Theory and Beyond ,(1986)
K. H. Fischer, Spin Glasses ,(1991)
K. Binder, A. P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions Reviews of Modern Physics. ,vol. 58, pp. 801- 976 ,(1986) , 10.1103/REVMODPHYS.58.801
Bernd A. Berg, Tarik Celik, New approach to spin-glass simulations Physical Review Letters. ,vol. 69, pp. 2292- 2295 ,(1992) , 10.1103/PHYSREVLETT.69.2292
Michio Tokuyama, Irwin Oppenheim, Dynamics of hard-sphere suspensions Physical Review E. ,vol. 50, pp. R16- R19 ,(1994) , 10.1103/PHYSREVE.50.R16
Werner Kerler, Peter Rehberg, Simulated-tempering procedure for spin-glass simulations Physical Review E. ,vol. 50, pp. 4220- 4225 ,(1994) , 10.1103/PHYSREVE.50.4220
Koji Hukushima, Koji Nemoto, Exchange Monte Carlo Method and Application to Spin Glass Simulations arXiv: Condensed Matter. ,(1995) , 10.1143/JPSJ.65.1604
N. Kawashima, A. P. Young, PHASE TRANSITION IN THE THREE-DIMENSIONAL J ISING SPIN GLASS Physical Review B. ,vol. 53, ,(1996) , 10.1103/PHYSREVB.53.R484
B. A. Berg, U. Hansmann, T. Neuhaus, Properties of Interfaces in the two and three dimensional Ising Model arXiv: High Energy Physics - Lattice. ,(1992) , 10.1007/BF02198159