Soliton solutions to coupled higher‐order nonlinear Schrödinger equations

作者: R. S. Tasgal , M. J. Potasek

DOI: 10.1063/1.529732

关键词:

摘要: A set of coupled higher‐order nonlinear Schrodinger equations, which describe electromagnetic pulse propagation in optical waveguides, is formulated terms an eigenvalue problem. Using that result, the inverse scattering problem solved and explicit soliton solutions are found. Additionally, linear coupling studied systematically.

参考文章(34)
Mark J. Ablowitz, David J. Kaup, Alan C. Newell, Harvey Segur, The Inverse scattering transform fourier analysis for nonlinear problems Studies in Applied Mathematics. ,vol. 53, pp. 249- 315 ,(1974) , 10.1002/SAPM1974534249
S. Jensen, The nonlinear coherent coupler IEEE Journal of Quantum Electronics. ,vol. 18, pp. 1580- 1583 ,(1982) , 10.1109/JQE.1982.1071438
Tsutomu Kawata, Jun-ichi Sakai, Nobuyuki Kobayashi, Inverse Method for the Mixed Nonlinear Schrödinger Equation and Soliton Solutions Journal of the Physical Society of Japan. ,vol. 48, pp. 1371- 1379 ,(1980) , 10.1143/JPSJ.48.1371
Tutomu Kawata, Hiroshi Inoue, Exact Solutions of the Derivative Nonlinear Schrödinger Equation under the Nonvanishing Conditions Journal of the Physical Society of Japan. ,vol. 44, pp. 1968- 1976 ,(1978) , 10.1143/JPSJ.44.1968
C.-J. Chen, P. K. A. Wai, C. R. Menyuk, Soliton switch using birefringent optical fibers. Optics Letters. ,vol. 15, pp. 477- 479 ,(1990) , 10.1364/OL.15.000477
S. Wabnitz, E. M. Wright, G. I. Stegeman, S. Trillo, Wavelength-dependent soliton self-routing in birefringent fiber filters Journal of The Optical Society of America B-optical Physics. ,vol. 8, pp. 602- 613 ,(1991) , 10.1364/JOSAB.8.000602
Narimasa Sasa, Junkichi Satsuma, New-Type of Soliton Solutions for a Higher-Order Nonlinear Schrödinger Equation Journal of the Physical Society of Japan. ,vol. 60, pp. 409- 417 ,(1991) , 10.1143/JPSJ.60.409
E. M. Wright, G. I. Stegeman, S. Wabnitz, Solitary-wave decay and symmetry-breaking instabilities in two-mode fibers Physical Review A. ,vol. 40, pp. 4455- 4466 ,(1989) , 10.1103/PHYSREVA.40.4455