Characters of equivariant D-modules on Veronese cones

作者: Claudiu Raicu

DOI:

关键词:

摘要: For d > 1, we consider the Veronese map of degree on a complex vector space W , Ver_d : -> Sym^d w w^d and denote its image by Z. We describe characters simple GL(W)-equivariant holonomic D-modules supported In case when is 2, obtain counterexample to conjecture Levasseur exhibiting D-module Capelli type representation Sym^2 which contains no SL(W)-invariant sections. also study local cohomology modules H_Z^j(S), where S ring polynomial functions W. recover result Ogus showing that there only one module non-zero (namely in j = codim(Z)), moreover prove it determine character.

参考文章(6)
Srikanth Iyengar, None, Twenty-Four Hours of Local Cohomology ,(2007)
Kiyoshi Takeuchi, Toshiyuki Tanisaki, Ryoshi Hotta, D-Modules, Perverse Sheaves, and Representation Theory ,(2007)
Claudiu Raicu, Jerzy Weyman, Emily E. Witt, Local cohomology with support in ideals of maximal minors and sub-maximal Pfaffians Advances in Mathematics. ,vol. 250, pp. 596- 610 ,(2014) , 10.1016/J.AIM.2013.10.005
Arthur Ogus, Local Cohomological Dimension of Algebraic Varieties The Annals of Mathematics. ,vol. 98, pp. 327- ,(1973) , 10.2307/1970785
A. Grothendieck, On the de rham cohomology of algebraic varieties Publications Mathématiques de l'IHÉS. ,vol. 29, pp. 95- 103 ,(1966) , 10.1007/BF02684807
T. Levasseur, Radial Components, Prehomogeneous Vector Spaces, and Rational Cherednik Algebras International Mathematics Research Notices. ,vol. 2009, pp. 462- 511 ,(2008) , 10.1093/IMRN/RNN137