Second Order Correctness of Perturbation Bootstrap M-Estimator of Multiple Linear Regression Parameter

作者: Soumendra Nath Lahiri , Debraj Das

DOI:

关键词:

摘要: Consider the multiple linear regression model $y_{i} = \boldsymbol{x}'_{i} \boldsymbol{\beta} + \epsilon_{i}$, where $\epsilon_i$'s are independent and identically distributed random variables, $\mathbf{x}_i$'s known design vectors $\boldsymbol{\beta}$ is $p \times 1$ vector of parameters. An effective way approximating distribution M-estimator $\boldsymbol{\bar{\beta}}_n$, after proper centering scaling, Perturbation Bootstrap Method. In this current work, second order results non-naive bootstrap method have been investigated. Second correctness important for reducing approximation error uniformly to $o(n^{-1/2})$ get better inferences. We show that classical studentized version bootstrapped estimator fails be correct. introduce an innovative modification in statistic modified pivot correct (S.O.C.) M-estimator. Additionally, we continues S.O.C. when errors independent, but may not distributed. These findings establish perturbation as a significant improvement over asymptotic normality M-estimation.

参考文章(34)
Peter J. Bickel, David A. Freedman, Some Asymptotic Theory for the Bootstrap Annals of Statistics. ,vol. 9, pp. 1196- 1217 ,(1981) , 10.1214/AOS/1176345637
David M. Mason, Michael A. Newton, A Rank Statistics Approach to the Consistency of a General Bootstrap Annals of Statistics. ,vol. 20, pp. 1611- 1624 ,(1992) , 10.1214/AOS/1176348787
Soumendra Nath Lahiri, Bootstrapping $M$-Estimators of a Multiple Linear Regression Parameter Annals of Statistics. ,vol. 20, pp. 1548- 1570 ,(1992) , 10.1214/AOS/1176348784
Faouzi El Bantli, M-estimation in linear models under nonstandard conditions Journal of Statistical Planning and Inference. ,vol. 121, pp. 231- 248 ,(2004) , 10.1016/S0378-3758(03)00113-7
Maher B. Qumsiyeh, Bootstrapping and empirical edgeworth expansions in multiple linear regression models Communications in Statistics-theory and Methods. ,vol. 23, pp. 3227- 3239 ,(1994) , 10.1080/03610929408831443
Enno Mammen, Bootstrap and Wild Bootstrap for High Dimensional Linear Models Annals of Statistics. ,vol. 21, pp. 255- 285 ,(1993) , 10.1214/AOS/1176349025
R. N. Bhattacharya, J. K. Ghosh, ON THE VALIDITY OF THE FORMAL EDGEWORTH EXPANSION Annals of Statistics. ,vol. 6, pp. 434- 451 ,(1978) , 10.1214/AOS/1176344134
Russell Davidson, Emmanuel Flachaire, The Wild Bootstrap, Tamed at Last Journal of Econometrics. ,vol. 146, pp. 162- 169 ,(2008) , 10.1016/J.JECONOM.2008.08.003
B. Efron, Bootstrap Methods: Another Look at the Jackknife Annals of Statistics. ,vol. 7, pp. 1- 26 ,(1979) , 10.1214/AOS/1176344552