Finite-Difference Schemes with Dissipation Control Joined to a Generalization of Van Leer Flux Splitting

作者: Germain Billet

DOI: 10.1007/978-3-322-87869-4_2

关键词:

摘要: A class of flux splitting explicit second-order finite-difference schemes S FS is set up. It depends on a single parameter. The adaptation the value this parameter enables us to control dissipative error included in these schemes. generalization Van LEER makes possible an improvement numerical solution regions where Mach number relatively weak. ID and 2D transonic flows are presented.

参考文章(9)
Alexandre Joel Chorin, Review: Roger Peyret and Thomas D. Taylor, Computational methods for fluid flow Bulletin of the American Mathematical Society. ,vol. 9, pp. 368- 372 ,(1983) , 10.1090/S0273-0979-1983-15213-8
Roger Peyret, Thomas D. Taylor, Computational methods for fluid flow ,(1982)
Joseph L Steger, R.F Warming, Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods Journal of Computational Physics. ,vol. 40, pp. 263- 293 ,(1981) , 10.1016/0021-9991(81)90210-2
W. Kyle Anderson, James L. Thomas, Bram Van Leer, Comparison of Finite Volume Flux Vector Splittings for the Euler Equations AIAA Journal. ,vol. 24, pp. 1453- 1460 ,(1985) , 10.2514/3.9465
Bram van Leer, Flux-vector splitting for the Euler equations Numerical Methods in Fluid Dynamics. ,vol. 170, pp. 80- 89 ,(1997) , 10.1007/978-3-642-60543-7_5
Roger Peyret, Thomas D. Taylor, Computational Methods for Fluid Flow Springer Berlin Heidelberg. ,(1983) , 10.1007/978-3-642-85952-6