Anomalous Diffusion: Deterministic and Stochastic Perspectives

作者: Roberto Artuso , Raffaella Burioni

DOI: 10.1007/978-3-642-54251-0_10

关键词:

摘要: Normal diffusion arises in a natural way from random walks with uncorrelated steps of bounded variance, or, the deterministic setting, wandering trajectories chaotic map. There are many ways which such picture fails, and, for instance, variance traveller’s position does not grow linearly time. We review basic mechanisms that induce deviations normal transport (long waiting times, broad step length distributions, intermittency, topological issues), and we describe how their origin can be traced back stochastic settings, illustrating few techniques allow quantitative analysis anomalies.

参考文章(73)
Didier Sornette, Critical Phenomena in Natural Sciences Springer Series in Synergetics. ,(2000) , 10.1007/978-3-662-04174-1
Nickolay Korabel, Eli Barkai, Pesin-Type Identity for Intermittent Dynamics with a Zero Lyaponov Exponent Physical Review Letters. ,vol. 102, pp. 050601- ,(2009) , 10.1103/PHYSREVLETT.102.050601
Viviane Baladi, Positive transfer operators and decay of correlations World Scientific. ,(2000) , 10.1142/3657
András Telcs, The art of random walks ,(2006)
P. Buonsante, R. Burioni, A. Vezzani, Transport and scaling in quenched two- and three-dimensional Lévy quasicrystals. Physical Review E. ,vol. 84, pp. 021105- ,(2011) , 10.1103/PHYSREVE.84.021105
Raffaella Burioni, Luca Caniparoli, Alessandro Vezzani, Lévy walks and scaling in quenched disordered media Physical Review E. ,vol. 81, pp. 060101- 060101 ,(2010) , 10.1103/PHYSREVE.81.060101
M. Thaler, R. Zweimüller, Distributional limit theorems in infinite ergodic theory Probability Theory and Related Fields. ,vol. 135, pp. 15- 52 ,(2006) , 10.1007/S00440-005-0454-3
Roberto Artuso, Giampaolo Cristadoro, Periodic orbit theory of strongly anomalous transport Journal of Physics A. ,vol. 37, pp. 85- 103 ,(2004) , 10.1088/0305-4470/37/1/006
D. Bessis, J. S. Geronimo, P. Moussa, Meblin transforms associated with Julia sets and physical applications Journal of Statistical Physics. ,vol. 34, pp. 75- 110 ,(1984) , 10.1007/BF01770350