Integral equation theory for dipolar hard sphere fluids with fluctuating orientational order

作者: S. H. L. Klapp , G. N. Patey

DOI: 10.1063/1.480531

关键词:

摘要: We present an integral equation approach to the structural and thermodynamic properties of a fluid partially aligned dipolar hard spheres. To relate two-particle correlation functions anisotropic singlet density, we mainly employ Lovett–Mou–Buff–Wertheim equation. show that, as in isotropic case, mean-spherical approximation reference hypernetted chain (RHNC) closures lead quite different results. This is particularly true at high coupling strengths, where RHNC theory shows transition from ferroelectric phase. The predicted temperatures are very close those one obtains for fluid.

参考文章(44)
Keith E. Gubbins, C.G. Joslin, C. G. Gray, Theory of molecular fluids Clarendon Press. ,(1984)
T.G. Sokolovska, Phase diagram in a continuum model of the classical Heisenberg ferromagnet: mean spherical approximation Physica A-statistical Mechanics and Its Applications. ,vol. 253, pp. 459- 472 ,(1998) , 10.1016/S0378-4371(97)00653-5
M. S. Wertheim, Correlations in the liquid–vapor interface The Journal of Chemical Physics. ,vol. 65, pp. 2377- 2381 ,(1976) , 10.1063/1.433352
A. Stroobants, H. N. W. Lekkerkerker, D. Frenkel, Evidence for smectic order in a fluid of hard parallel spherocylinders Physical Review Letters. ,vol. 57, pp. 1452- 1455 ,(1986) , 10.1103/PHYSREVLETT.57.1452
Kin‐Chue Ng, Hypernetted chain solutions for the classical one‐component plasma up to Γ=7000 Journal of Chemical Physics. ,vol. 61, pp. 2680- 2689 ,(1974) , 10.1063/1.1682399
J. J. Weis, D. Levesque, Ferroelectric phases of dipolar hard spheres. Physical Review E. ,vol. 48, pp. 3728- 3740 ,(1993) , 10.1103/PHYSREVE.48.3728
Ronald Lovett, Chung Yuan Mou, Frank P Buff, None, The structure of the liquid–vapor interface Journal of Chemical Physics. ,vol. 65, pp. 570- 572 ,(1976) , 10.1063/1.433110
SW De Leeuw, JW Perram, ER Smith, Simulation of Electrostatic Systems in Periodic Boundary Conditions. III. Further Theory and Applications Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 388, pp. 177- 193 ,(1983) , 10.1098/RSPA.1983.0077