Lyapunov Spectra in Spatially Extended Systems

作者: Stefano Ruffo

DOI: 10.1007/978-94-015-9223-9_6

关键词:

摘要: This series of lectures reviews some aspects the theory Lyapunov characteristic exponents (LCE) and its application to spatially extended systems, namely chains coupled oscillators map lattices (CML). After introducing main definitions theorems presenting most widely used computational algorithm (due Benettin et al.) in Section 1, I give an account, 2, existence a spectral density thermodynamic limit (first conjectured by Ruelle for Navier-Stokes equation then numerically evidentiated Fermi-Pasta-Ulam oscillator chain Politi al.). Although not intrinsically defined, eigenvectors are important tool studying spatial development chaos: their localization property (in sense Anderson theory) is presented 3, together with recent generalization known as chronotopic analysis, due Lepri al.. The random matrix approximation allows obtain reasonable estimates LCE when chaos well developed correlations weak: examples analytical calculation scaling laws perturbation parameter Verlet matrices discussed 4, along path opened Parisi Finally, 5 discuss recently discovered phenomenon coupling sensitivity (Daido), which sharp increase (as 1/ln(e)) maximal diffusive e switched on CML models; treatment quite appealing, making reference interesting probabilistic model, energy model Derrida.

参考文章(42)
Stefano Lepri, Antonio Politi, Alessandro Torcini, CHRONOTOPIC LYAPUNOV ANALYSIS. I. A DETAILED CHARACTERIZATION OF 1D SYSTEMS Journal of Statistical Physics. ,vol. 82, pp. 1429- 1452 ,(1996) , 10.1007/BF02183390
Irene Waller, Raymond Kapral, Spatial and temporal structure in systems of coupled nonlinear oscillators Physical Review A. ,vol. 30, pp. 2047- 2055 ,(1984) , 10.1103/PHYSREVA.30.2047
Giancarlo Benettin, Luigi Galgani, Antonio Giorgilli, Jean-Marie Strelcyn, Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application Meccanica. ,vol. 15, pp. 21- 30 ,(1980) , 10.1007/BF02128237
J Ford, The Fermi-Pasta-Ulam problem: Paradox turns discovery Physics Reports. ,vol. 213, pp. 271- 310 ,(1992) , 10.1016/0370-1573(92)90116-H
Giovanni Paladin, Angelo Vulpiani, Anomalous scaling laws in multifractal objects Physics Reports. ,vol. 156, pp. 147- 225 ,(1987) , 10.1016/0370-1573(87)90110-4
J. DeLuca, A. J. Lichtenberg, S. Ruffo, Energy transitions and time scales to equipartition in the Fermi-Pasta-Ulam oscillator chain. Physical Review E. ,vol. 51, pp. 2877- 2885 ,(1995) , 10.1103/PHYSREVE.51.2877
Kunihiko Kaneko, Tetsuro Konishi, Transition, Ergodicity and Lyapunov Spectra of Hamiltonian Dynamical Systems Journal of the Physical Society of Japan. ,vol. 56, pp. 2993- 2996 ,(1987) , 10.1143/JPSJ.56.2993
Roberto Livi, Marco Pettini, Stefano Ruffo, Angelo Vulpiani, Chaotic behavior in nonlinear Hamiltonian systems and equilibrium statistical mechanics Journal of Statistical Physics. ,vol. 48, pp. 539- 559 ,(1987) , 10.1007/BF01019687
Ya. G. SINAI, A REMARK CONCERNING THE THERMODYNAMICAL LIMIT OF THE LYAPUNOV SPECTRUM International Journal of Bifurcation and Chaos. ,vol. 06, pp. 1137- 1142 ,(1996) , 10.1142/S021812749600062X
Giancarlo Benettin, Power-law behavior of Lyapunov exponents in some conservative dynamical systems Physica D: Nonlinear Phenomena. ,vol. 13, pp. 211- 220 ,(1984) , 10.1016/0167-2789(84)90278-1