Universality of Flux Creep in Superconductors with Arbitrary Shape and Current-Voltage Law

作者: Ernst Helmut Brandt

DOI: 10.1103/PHYSREVLETT.76.4030

关键词:

摘要: The nonlinear and nonlocal diffusion equation for the relaxing current density $J(\mathbf{r},t)$ in long superconductors of arbitrary cross section a constant perpendicular magnetic field ${B}_{a}$ is solved exactly by separation variables electric $E(\mathbf{r},t)\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}f(\mathbf{r})g(t)$. This solution includes limiting cases longitudinal transverse geometries applies to current-voltage laws $E\ensuremath{\propto}{J}^{n}$ ranging from Ohmic ( $n\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}1$) Bean-like $n\ensuremath{\rightarrow}\ensuremath{\infty}$) behavior. profile $f(\mathbf{r})$ weakly depends on $n$ becomes universal exceeding $\ensuremath{\approx}5$. At large times $t$ one finds $E\ensuremath{\propto}1/{t}^{n/(n\ensuremath{-}1)}$ $J\ensuremath{\propto}1/{t}^{1/(n\ensuremath{-}1)}$ $ng1$, $E\ensuremath{\propto}J\ensuremath{\propto}\mathrm{exp}(\ensuremath{-}t/{\ensuremath{\tau}}_{0})$ $n\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}1$. contour lines creeping $E(\mathbf{r},t)$ coincide with $\mathbf{B}(\mathbf{r},t)$ remanent state ${B}_{a}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}0$.

参考文章(12)
A. Gurevich, H. Küpfer, Time scales of the flux creep in superconductors Physical Review B. ,vol. 48, pp. 6477- 6487 ,(1993) , 10.1103/PHYSREVB.48.6477
A. GUREVICH, NONLINEAR FLUX DIFFUSION IN SUPERCONDUCTORS International Journal of Modern Physics B. ,vol. 09, pp. 1045- 1065 ,(1995) , 10.1142/S0217979295000422
Alexander Gurevich, Ernst Helmut Brandt, Flux creep in superconducting films: An exact solution. Physical Review Letters. ,vol. 73, pp. 178- 181 ,(1994) , 10.1103/PHYSREVLETT.73.178
E H Brandt, The flux-line lattice in superconductors Reports on Progress in Physics. ,vol. 58, pp. 1465- 1594 ,(1995) , 10.1088/0034-4885/58/11/003
Thomas Schuster, Holger Kuhn, Ernst Helmut Brandt, Observation of neutral lines during flux creep in thin high-Tc superconductors. Physical Review B. ,vol. 51, pp. 697- 700 ,(1995) , 10.1103/PHYSREVB.51.697
V. M. Vinokur, M. V. Feigel’man, V. B. Geshkenbein, Exact solution for flux creep with logarithmicU(j) dependence: Self-organized critical state in high-Tcsuperconductors Physical Review Letters. ,vol. 67, pp. 915- 918 ,(1991) , 10.1103/PHYSREVLETT.67.915
Th. Schuster, M. V. Indenbom, H. Kuhn, E. H. Brandt, M. Konczykowski, Flux penetration and overcritical currents in flat superconductors with irradiation-enhanced edge pinning: Theory and experiment. Physical Review Letters. ,vol. 73, pp. 1424- 1427 ,(1994) , 10.1103/PHYSREVLETT.73.1424
Michio Tokuyama, Irwin Oppenheim, Dynamics of hard-sphere suspensions Physical Review E. ,vol. 50, pp. R16- R19 ,(1994) , 10.1103/PHYSREVE.50.R16
Ernst Helmut Brandt, Dynamics of flat superconductors in a perpendicular magnetic field Physical Review Letters. ,vol. 71, pp. 2821- 2824 ,(1993) , 10.1103/PHYSREVLETT.71.2821
Ernst Helmut Brandt, Thin superconductors in a perpendicular magnetic ac field. II. Circular disk. Physical Review B. ,vol. 50, pp. 4034- 4050 ,(1994) , 10.1103/PHYSREVB.50.4034