Approximate point spectrum of a weighted shift

作者: William C. Ridge

DOI: 10.1090/S0002-9947-1970-0254635-5

关键词:

摘要: Notation. If T is a Hilbert space operator, let A(T) denote its spectrum, fl(T) approximate point flo(T) r(T) compression m(T) lower bound (i.e., inf{ lTxll/llxll: x7&0}), and spectral radius. Let i(T) supn m(Tn)l"n, which equals limn m(Tn)1"n. R weighted right shift on 11, defined by Ren=snen +I , where (en) an orthonormal basis of 12, n = 1, 2, .... L adjoint, left shift. B two-sided Ben=sSnen+1 n=0, ? .. ., here being 12. has purely nonzero weights (sn), then

参考文章(4)
Robert Lee Kelley, Weighted shifts on Hilbert space University Microfilms. ,(1966)
Paul Richard Halmos (Mathematician, Hungary, United States), A Hilbert Space Problem Book ,(1967)
Ralph Gellar, Cyclic vectors and parts of the spectrum of a weighted shift Transactions of the American Mathematical Society. ,vol. 146, pp. 69- 85 ,(1969) , 10.1090/S0002-9947-1969-0259642-6
Ralph Gellar, Operators commuting with a weighted shift Proceedings of the American Mathematical Society. ,vol. 23, pp. 538- 545 ,(1969) , 10.1090/S0002-9939-1969-0259641-X