Perturbation Analysis of Maximum-Weighted Bipartite Matchings with Low Rank Data

作者: Xingwu Liu , Shang-Hua Teng

DOI: 10.1007/978-3-642-38768-5_63

关键词:

摘要: In this paper, we partially address a question raised by David Karger [5] regarding the structure of maximum-weighted bipartite matchings when affinity data is low rank. The weighted graph G over vertex sets U = V {1,...,n} means n×n matrix W whose entry ij weight edge (i,j) G, 1 ≤ i,j n. has rank at most r if there are 2r vector u 1,...,u r, v 1,...v ∈ ℝn such that $$W \sum_{i=1}^r \bf{u}_i \mathbf{v}^T_i.$$

参考文章(10)
Keith M. Ball, An Elementary Introduction to Modern Convex Geometry Flavors of Geometry, 1997, ISBN 0-521-62048-1, págs. 1-58. pp. 1- 58 ,(1997)
Pravin Vaidya, Geometry helps in matching symposium on the theory of computing. pp. 422- 425 ,(1988) , 10.1145/62212.62253
Ran Duan, Seth Pettie, Approximating Maximum Weight Matching in Near-Linear Time 2010 IEEE 51st Annual Symposium on Foundations of Computer Science. pp. 673- 682 ,(2010) , 10.1109/FOCS.2010.70
R. Sharathkumar, Pankaj K. Agarwal, A near-linear time ε-approximation algorithm for geometric bipartite matching Proceedings of the 44th symposium on Theory of Computing - STOC '12. pp. 385- 394 ,(2012) , 10.1145/2213977.2214014
Kenneth Steiglitz, Christos H. Papadimitriou, Combinatorial Optimization: Algorithms and Complexity ,(1981)
Pravin M. Vaidya, Approximate minimum weight matching on points in k -dimensional space Algorithmica. ,vol. 4, pp. 569- 583 ,(1989) , 10.1007/BF01553909
Martin Grötschel, László Lovász, Alexander Schrijver, Geometric Algorithms and Combinatorial Optimization ,(1988)
Martin Grötschel, László Lovász, Alexander Schrijver, Geometric Algorithms and Combinatorial Optimization Algorithms and Combinatorics. ,(1988) , 10.1007/978-3-642-97881-4