Quantum Dots of Indium Nitrides with Special Magneto-Optic Properties

作者: Liudmila A. Pozhar

DOI: 10.1016/B978-0-12-396984-2.00008-X

关键词:

摘要: Functionality of low-dimensional structures indium nitrides can be significantly modified by substitution doping with atoms “magnetic” elements, such as Ni or Co. Quantum many-body field theoretical studies electron energy level structure (ELS), molecular electrostatic potential (MEP), and charge spin density distributions (CDDs SDDs, respectively) small InAsN InN (QDs) containing Co show that systems possess uncompensated magnetic moment comparable larger than similar QDs Mn V studied in Chapter 5. At the same time, spins nitride doped are localized vicinity atoms, rather delocalized near In bulk QDs, which is typical for “diluted semiconductor” Moreover, only a few Ni- Co- develop deficit regions (holes), signifying nanostructures thin films composed may have bright prospects applications. particular, recording devices spintronics presence significant mission crucial, while electrons carriers preferred over holes many cases. Similar to case undoped nitrides, accumulated nitrogen nickel inside where not accumulate on themselves, but also contribute dramatically re-distribution carried toward atoms. As result, ground state Ni-doped QD about 158 H per atom lower their counterparts 6, increased stability systems.

参考文章(25)
Junqiao Wu, When group-III nitrides go infrared: New properties and perspectives Journal of Applied Physics. ,vol. 106, pp. 011101- ,(2009) , 10.1063/1.3155798
T. K. Sharma, E. Towe, Application-oriented nitride substrates: The key to long-wavelength nitride lasers beyond 500 nm Journal of Applied Physics. ,vol. 107, pp. 024516- ,(2010) , 10.1063/1.3280033
Walter J. Stevens, Morris Krauss, Harold Basch, Paul G. Jasien, Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms Canadian Journal of Chemistry. ,vol. 70, pp. 612- 630 ,(1992) , 10.1139/V92-085
Thomas R. Cundari, Walter J. Stevens, Effective core potential methods for the lanthanides Journal of Chemical Physics. ,vol. 98, pp. 5555- 5565 ,(1993) , 10.1063/1.464902
V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, A. Yamamoto, Photoluminescence and Raman study of hexagonal InN and In-rich InGaN alloys Physica Status Solidi B-basic Solid State Physics. ,vol. 240, pp. 425- 428 ,(2003) , 10.1002/PSSB.200303448
Louay Eldada, Optical communication components Review of Scientific Instruments. ,vol. 75, pp. 575- 593 ,(2004) , 10.1063/1.1647701
L. A. Pozhar, Small InAsN and InN clusters: electronic properties and nitrogen stability belt European Physical Journal D. ,vol. 57, pp. 343- 354 ,(2010) , 10.1140/EPJD/E2010-00067-X
N. Theodoropoulou, A. F. Hebard, M. E. Overberg, C. R. Abernathy, S. J. Pearton, S. N. G. Chu, R. G. Wilson, Magnetic and structural properties of Mn-implanted GaN Applied Physics Letters. ,vol. 78, pp. 3475- 3477 ,(2001) , 10.1063/1.1376659
Michael W. Schmidt, Kim K. Baldridge, Jerry A. Boatz, Steven T. Elbert, Mark S. Gordon, Jan H. Jensen, Shiro Koseki, Nikita Matsunaga, Kiet A. Nguyen, Shujun Su, Theresa L. Windus, Michel Dupuis, John A. Montgomery, General atomic and molecular electronic structure system Journal of Computational Chemistry. ,vol. 14, pp. 1347- 1363 ,(1993) , 10.1002/JCC.540141112